Nano Technology News  
NANO TECH
Towards stable, sustained Raman imaging of large samples at the nanoscale
by Staff Writers
Tokushima, Japan (SPX) Jul 17, 2022

Conventional nanoscale imaging is usually difficult to perform for large, micron-scale samples owing to drifts caused by thermal effects and vibrations. Now, researchers from Japan address this issue with a newly developed imaging system that compensates for such drifts.

Raman spectroscopy, an optical microscopy technique, is a non-destructive chemical analysis technique that provides rich molecular fingerprint information about chemical structure, phase, crystallinity, and molecular interactions. The technique relies on the interaction of light with chemical bonds within a material.

However, since light is a wave, optical microscopes are unable to resolve distances less than half the wavelength of the light incident on the sample. This is known as the "diffraction limit," which prevents Raman spectroscopy and other optical microscopy techniques from reaching nanoscale resolutions.

To improve the spatial resolution, another technique called "tip-enhanced Raman spectroscopy" (TERS) was invented, which can reach spatial resolutions below the diffraction limit. In TERS, a metallic nano-sized tip confines the light within a nano-sized volume just above the sample. The light interacts with the sample molecules on the surface and the imaging is performed by analyzing the scattered light.

TERS has been successfully used to analyze chemical compositions and surface defects in sample at nanoscale resolutions. However, during imaging, the nanotip tends to drift due to unavoidable thermal and vibrational fluctuations under ambient conditions, causing either the sample to be out-of-focus or misalignment between the nanotip and focal spot, or both.

This causes considerable distortions in the scattered signals. To avoid this, TERS imaging needs to be completed within a time window of 30 minutes, a restriction that prevents imaging of any sample larger than 1 um2 with nanoscale resolution.

In a new study published in Science Advances, a research team from Japan, led by Dr. Ryo Kato, a designated Assistant Professor at the Institute of Post-LED Photonics at Tokushima University, and Associate Professor Takayuki Umakoshi and Professor Prabhat Verma from Osaka University, has now developed, for the first time, a stable TERS system that is not limited to a short imaging time window.

The team demonstrated its capability by successfully imaging nanoscale defects over a period of 6 hours in a micrometer-sized, two-dimensional (2D) tungsten disulfide (WS2) film - a material commonly used in optoelectronic devices. "Our new optical nano-imaging system enables characterization of defect analysis in large-sized WS2 layers at a high pixel resolution down to 10 nm without any significant loss of optical signal," says Dr. Kato.

To compensate for the drifts over extended periods, the team developed a feedback system that tracks the displacement of the focused light source and readjusts the position of the focus plane accordingly. The focal position of the light source is tracked by measuring the displacement of a reflected laser guide beam directed into the microscope. The focus is then stabilized with a piezo-controlled objective scanner whenever the system senses a drift or a change in the focal position of the light source.

To stabilize the nanotip, the team designed a laser-scanning-assisted tip drift compensation system. In this case, galvano-scanners take images of the laser spot around the metallic nanotip just as it approaches the sample surface. This image appears as a bright spot and indicates the position of the nanotip.

Once the measurement at a particular pixel has been carried out, the image of the laser spot around the nanotip is captured again. The laser spot is then moved to match the new position of the nanotip in this image. The process continues throughout the imaging process, ensuring the nanotip remains at a constant position.

By implementing these corrections, the team was able to image a 2D sheet of WS2 (Figure 1) with a scan area of 1 + 4 um2. With a 12 times longer imaging time window than that of conventional imaging, they could detect unique defects missed in conventional TER imaging. They also showed that the defect density on a larger WS2 sample (comparable to device scales) was higher than that reported for smaller samples.

The study could open doors to precise, high-resolution imaging of not only optoelectronic devices but also biological samples. "Our new drift-compensated TERS microscopy could not only evaluate surface properties of device materials better but also allow us to study biological processes such as the mechanism underlying the development of diseases. This, in turn, could help develop novel clinical methods and therapies," speculates Dr. Umakoshi. These are certainly some exciting possibilities to contemplate!

Research Report:Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers


Related Links
Institute of Post-LED Photonics, Tokushima University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
A mirror tracks a tiny particle
Innsbruck, Austria (SPX) Jun 30, 2022
Levitated nanoparticles are promising tools for sensing ultra-weak forces of biological, chemical or mechanical origin and even for testing the foundations of quantum physics. However, such applications require precise position measurement. Researchers at the Department of Experimental Physics of the University of Innsbruck, Austria, have now demonstrated a new technique that boosts the efficiency with which the position of a sub-micron levitated object is detected. "Typically, we measure a nanopa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Advanced Navigation sets sight to be the first Australian company to reach the Moon

Can China claim ownership rights on the Moon

Porosity of the moon's crust reveals bombardment history

Experts find way to make better use of lunar samples

NANO TECH
China prepares to launch Wentian lab module

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

Wheels on China's Zhurong rover keep stable with novel material

Construction of China's first commercial spacecraft launch site starts in Hainan

NANO TECH
Written all over your face: An improved AI model for recognizing facial expression

MI5, FBI chiefs warn over China in rare joint address

Hacker claims major Chinese citizens' data theft

UK probes hacking of army's Twitter, YouTube accounts

NANO TECH
Advanced Navigation sets sight to be the first Australian company to reach the Moon

Can China claim ownership rights on the Moon

Porosity of the moon's crust reveals bombardment history

Experts find way to make better use of lunar samples

NANO TECH
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

NANO TECH
Predicting equatorial plasma bubbles with SWARM

BlackSky and Esri target on-demand dynamic satellite tasking to ArcGIS customers

Ocean and wave models complement atmosphere-only storm predictions

Great Air Quality for the Great Lakes Region

NANO TECH
Towards stable, sustained Raman imaging of large samples at the nanoscale

A mirror tracks a tiny particle

New silicon nanowires can really take the heat

Cooling speeds up electrons in bacterial nanowires

NANO TECH
Bees' 'waggle dance' may revolutionize how robots talk to each other in disaster zones

Shapeshifting microrobots can brush and floss teeth

Rover plus astronaut complete Mount Etna challenge

Building explainability into the components of machine-learning models









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.