Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Toward 'vanishing' electronics and unlocking nanomaterials' power potential
by Staff Writers
Dallas TX (SPX) Mar 24, 2014


File image.

Brain sensors and electronic tags that dissolve. Boosting the potential of renewable energy sources. These are examples of the latest research from two pioneering scientists selected as this year's Kavli lecturers at the 247th National Meeting and Exposition of the American Chemical Society (ACS), the world's largest scientific society.

The meeting features more than 10,000 presentations from the frontiers of chemical research, and is being held here through Thursday. Two of these talks are supported by The Kavli Foundation, a philanthropic organization that encourages basic scientific innovation. These lectures, which are a highlight of the conference, shine a spotlight on the work of both young and established researchers who are pushing the boundaries of science to address some of the world's most pressing problems.

Tackling health and sustainability issues simultaneously, John Rogers, Ph.D., is developing a vast toolbox of materials - from magnesium and silicon to silk and even rice paper - to make biodegradable electronics that can potentially be used in a range of applications. He will deliver "The Fred Kavli Innovations in Chemistry Lecture."

"What we're finding is that there's a robust and diverse palette of material options at every level," said Rogers, who's with the University of Illinois, Urbana-Champaign. "For the conductor, for the semiconductor, for the insulating layer and the package and the substrate, one can pick and choose materials depending on the application's requirements."

Rogers' team is working to incorporate some of these elements in sensors that can, for example, detect the early onset of swelling and temperature changes in the brain after head injuries and then vanish when they're no longer needed. Today, devices designed for these purposes are wired - they have to be implanted and later completely removed once they're no longer needed. Rogers' sensor could be implanted but work wirelessly and, after use, "simply disappear."

That eliminates the risk of infection and other complications associated with having to remove devices surgically. Rogers has successfully tested early prototypes of sensors in laboratory animals and envisions that such devices could be used one day in human patients.

His group is also working on biodegradable radio-frequency identification tags, or RFID tags. Currently, RFIDs are produced by the billions and used in everything from jeans for accurately tracking inventory to smart cards and injected into pets. They are also found in product packaging that ends up in landfills. Using cellulose, zinc and silicon, Rogers has successfully made dissolvable RFID tags in the lab. The next step would be figuring out how to scale production up and commercialize it.

"We're quite optimistic," Rogers said. "We see the way forward and are about halfway there."

Delivering the "The Kavli Foundation Emerging Leader in Chemistry Lecture" is Emily Weiss, Ph.D., of Northwestern University. Her lab is focused on getting the most power possible out of mixed and matched nanomaterials that are being developed to maximize renewable energy sources. Scientists can now engineer these materials with unprecedented precision to capture large amounts of energy - for example, from the sun and heat sources. But getting all that energy from these materials and pushing it out into the world to power up homes and gadgets have been major obstacles.

"Electric current originates from the movement of electrons through a material," Weiss explained. "But as they move through a material or device, they encounter places where they have to jump from one type of material to another at what's called an interface. By interfaces, I mean places where portions of the material that are not exactly alike meet up. The problem is when an electron has to cross from one material to another, it loses energy."

As structures in materials get smaller, the interface problem becomes amplified because nanomaterials have more surface area compared to their volume. So electrons in these advanced devices have to travel across more and more interfaces, and they lose energy as heat every time.

But thanks to the latest advances in analytical instruments and computing power, Weiss' group is poised to turn this disadvantage into a plus. "Rather than seeing all these interfaces as a negative, now we don't need to consider it a drawback," she said. "We can design an interface such that we can get rid of defects and get rid of this slowdown. We can actually use carefully designed interfaces to enhance the properties of your device. That sort of philosophy is starting to take hold."

.


Related Links
American Chemical Society
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News



International Conference on Protection of Materials and Structures From Space Environment



NANO TECH
Nanoscale optical switch breaks miniaturization barrier
Nashville TN (SPX) Mar 19, 2014
An ultra-fast and ultra-small optical switch has been invented that could advance the day when photons replace electrons in the innards of consumer products ranging from cell phones to automobiles. The new optical device can turn on and off trillions of times per second. It consists of individual switches that are only one five-hundredth the width of a human hair (200 nanometers) in diamet ... read more


NANO TECH
NASA Centers Team Up to Tackle Sonic Boom

Boeing Phantom Swift Selected for DARPA X-Plane Competition

Philippines to spend $524mn on military aircraft

Luke Air Force Base Receives First F-35A Lightning II

NANO TECH
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

NANO TECH
Robot Snowden promises more US spying revelations

NSA can retrieve, replay phone calls: report

Quantum physics secures new cryptography scheme

NATO websites targeted in attack claimed by Ukrainian hackers

NANO TECH
BTM Reduces Coolant Usage and Waste Removal Costs with QualiChem Fluids

ICLEI Launches "Climate Pathways" to Help Cities Fight Carbon Pollution

Cutting Victorian energy efficiency scheme would hit vulnerable households and jobs

Move by Norway sovereign wealth fund to invest in renewables could have 'global impact'

NANO TECH
Birth of a New Ukrainian Nation?

Bitterness over Exxon Valdez lingers, 25 years on

US Seals take control of rogue Libya oil ship: Pentagon

Greenpeace sues Russia over Arctic Sunrise detention

NANO TECH
USAF Declares Initial Operational Capability for Lockheed Martin's Sniper Advanced Targeting Pod

Singapore, Jakarta defuse row over marines as 'bombers'

DARPA Begins Early Transition of Adaptive Vehicle Make Technologies

China soldiers too big for outdated tanks: report

NANO TECH
Nanoscale optical switch breaks miniaturization barrier

Chelyabinsk meteor to help develop nanotechnology

Optical nano-tweezers take over the control of nano-objects

NIST microanalysis technique makes the most of small nanoparticle samples

NANO TECH
Soft robotic fish moves like the real thing

The DARPA Grand Challenge: Ten Years Later

Researchers Achieve Breakthrough in Robotics for Space Exploration

Robots, hands-free wizardry wows at high-tech fair




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.