Nano Technology News  
NANO TECH
Touchy nanotubes work better when clean
by Staff Writers
Houston TX (SPX) Feb 01, 2018

Scientists at Rice and Swansea universities have demonstrated that heating carbon nanotubes at high temperatures eliminates contaminants that make nanotubes difficult to test for conductivity. They found when measurements are taken within 4 microns of each other, regions of depleted conductivity caused by contaminants overlap, which scrambles the results. The plot shows the deviation when probes test conductivity from minus 1 to 1 volt at distances greater or less than 4 microns.

Carbon nanotubes bound for electronics need to be as clean as possible to maximize their utility in next-generation nanoscale devices, and scientists at Rice and Swansea universities have found a way to remove contaminants from the nanotubes.

Rice chemist Andrew Barron, also a professor at Swansea in the United Kingdom, and his team have figured out how to get nanotubes clean and in the process discovered why the electrical properties of nanotubes have historically been so difficult to measure.

Like any normal wire, semiconducting nanotubes are progressively more resistant to current along their length. But over the years, conductivity measurements of nanotubes have been anything but consistent. The Rice-Swansea team wanted to know why.

"We are interested in the creation of nanotube-based conductors, and while people have been able to make wires, their conduction has not met expectations," Barron said.

"We wanted to determine the basic science behind the variability observed by other researchers."

They discovered that hard-to-remove contaminants - leftover iron catalyst, carbon and water - could easily skew the results of conductivity tests. Burning those contaminants away, Barron said, creates new possibilities for carbon nanotubes in nanoscale electronics.

The new study appears in the American Chemical Society journal Nano Letters.

The researchers first made multiwalled carbon nanotubes between 40 and 200 nanometers in diameter and up to 30 microns long. They then either heated the nanotubes in a vacuum or bombarded them with argon ions to clean their surfaces.

They tested individual nanotubes the same way one would test any electrical conductor: by touching them with two probes to see how much current passes through the material from one tip to the other. In this case, tungsten probes were attached to a scanning tunneling microscope.

In clean nanotubes, resistance got progressively stronger as the distance increased, as it should. But the results were skewed when the probes encountered surface contaminants, which increased the electric field strength at the tip. And when measurements were taken within 4 microns of each other, regions of depleted conductivity caused by contaminants overlapped, which further scrambled the results.

"We think this is why there's such inconsistency in the literature," Barron said.

"If nanotubes are to be the next-generation lightweight conductor, then consistent results, batch-to-batch and sample-to-sample, are needed for devices such as motors and generators as well as power systems."

Heating the nanotubes in a vacuum above 200 degrees Celsius (392 degrees Fahrenheit) reduced surface contamination, but not enough to eliminate inconsistent results, they found. Argon ion bombardment also cleaned the tubes but led to an increase in defects that degrade conductivity.

Ultimately the researchers discovered vacuum annealing nanotubes at 500 degrees Celsius (932 Fahrenheit) reduced contamination enough to measure resistance accurately.

Barron said engineers who use nanotube fibers or films in devices currently modify the material through doping or other means to get the conductive properties they require. But if the source nanotubes are sufficiently decontaminated, they should be able to get the desired conductivity by simply putting their contacts in the right spot.

"A key result of our work is that if contacts on a nanotube are less than 1 micron apart, the electronic properties of the nanotube change from conductor to semiconductor, due to the presence of overlapping depletion zones, which shrink but are still present even in clean nanotubes," Barron said.

"This has a potential limiting factor on the size of nanotube-based electronic devices," he said.

"Carbon-nanotube devices would be limited in how small they could become, so Moore's Law would only apply to a point."

Research paper


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Silver nanoparticles take spectroscopy to new dimension
Washington DC (SPX) Jan 03, 2018
As medicine and pharmacology investigate nanoscale processes, it has become increasingly important to identify and characterize different molecules. Raman spectroscopy, a technique that leverages the scattering of laser light to identify molecules, has a limited capacity to detect molecules in diluted samples because of low signal yield. A team of researchers from the University of Hyderabad in India has improved molecular detection at low concentration levels by arranging nanoparticles on nanowir ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Chinese volunteers spend 200 days on virtual 'moon base'

Russia at work on new station, lunar trips: says top rocket scientist

Russian company declassifies 1973 report on Lunokhod-2 lunar rover

Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

NANO TECH
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

NANO TECH
Russia infrastructure spying could cause 'total chaos': UK defence minister

China calls AU spying report 'preposterous'

China tightens screws on social media

Canadian professor suspected of spying for China

NANO TECH
Chinese volunteers spend 200 days on virtual 'moon base'

Russia at work on new station, lunar trips: says top rocket scientist

Russian company declassifies 1973 report on Lunokhod-2 lunar rover

Possible Lava Tube Skylights Discovered Near the North Pole of the Moon

NANO TECH
On the rebound as nanoparticles self-heal

Let the good tubes roll

Touchy nanotubes work better when clean

Ultra-thin optical fibers offer new way to 3-D print microstructures

NANO TECH
NASA's GOLD powers on for the first time

Tiny particles have outsized impact on storm clouds and precipitation

China launches remote sensing satellites

NASA GOLD Mission to image Earth's interface to space

NANO TECH
On the rebound as nanoparticles self-heal

Let the good tubes roll

Touchy nanotubes work better when clean

Ultra-thin optical fibers offer new way to 3-D print microstructures

NANO TECH
NIST's superconducting synapse may be missing piece for 'artificial brains'

Let's make a deal: Could AI compromise better than humans?

Dutch robots help make cheese, 'smell' the roses

'Job-killing' robots, AI under scrutiny in Davos









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.