Nano Technology News  
NANO TECH
Tiniest imperfections make big impacts in nano-patterned materials
by Staff Writers
Washington DC (SPX) Jul 03, 2016


File image.

A research team at Clarkson University reports an interesting conclusion that could have major impacts on the future of nano-manufacturing. Their analysis for a model of the process of random sequential adsorption (RSA) shows that even a small imprecision in the position of the lattice landing sites can dramatically affect the density of the permanently formed deposit.

With the advent of nanotechnology, not only can we deposit tiny particles, but the target surfaces or substrates can be tailored to control the resulting structures.

This article addresses the precision that must exist in the pattern of the target surface, in order to achieve high perfection and high coverage in the pattern of deposited particles. To do this, it compares RSA on three types of surfaces: a continuous (non-patterned) lattice, a precisely patterned surface, and a surface with small imprecisions in the pattern.

The researchers find that very small imprecisions can make RSA proceed as if the surface is continuous. The consequence is that the deposition process is less efficient, and the ultimate coverage is much lower.

In the process of RSA, a continuous surface is covered slowly with a larger fraction of the area remaining uncovered than a precisely lattice-patterned surface. In the past when surfaces on which microscopic particles were deposited were naturally flat (continuous) or had a lattice-structure, the importance of small imprecisions had not been recognized.

The researchers explain their analysis this week in the Journal of Chemical Physics, from AIP Publishing.

Vladimir Privman at Clarkson University has been involved in studying aspects of such systems since 2007; however this study, conducted with graduate student Han Yan, was the first to consider the imprecision in the surface lattice-site localization, rather than in the particle size uniformity.

Initially suggested by computer modeling, their results were later derived by analytical model considerations which are novel for the research field of RSA.

"The greatest difficulty was to understand and accept the initial numerical finding that suggested results that seemed counterintuitive," Privman explained. "Once accepted, we could actually confirm the initial findings, as well as generalize and systematize them by analytical arguments."

Pre-patterned substrates have been studied for applications ranging from electronics to optics, to sensors, and to directed crystal growth. The reported results suggest that efforts at precise fixed positioning and object-sizing in nano-manufacturing might be counterproductive if done as part of forming structures by RSA, under practically irreversible conditions.

A certain degree of relaxation, to allow objects to "wiggle their way" into matching positions, may actually be more effective in improving both the density and rate of formation of the desired dense structures, Privman said.

This work has implications that the team is preparing to explore.

"Now that we have realized that not only particle non-uniformity, but also substrate-pattern imprecision have substantial effects on the dynamics of the RSA process, we will begin studying various systems and patterning geometries, expanding beyond our original model," Privman said.

Research paper: "Random sequential adsorption on imprecise lattice," is authored by Vladimir Privman and Han Yan.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
DNA shaping up to be ideal framework for rationally designed nanostructures
Upton NY (SPX) Jun 19, 2016
A cube, an octahedron, a prism - these are among the polyhedral structures, or frames, made of DNA that scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have designed to connect nanoparticles into a variety of precisely structured three-dimensional (3D) lattices. The scientists also developed a method to integrate nanoparticles and DNA frames into interconnectin ... read more


NANO TECH
China firm declares success in $1.5 bn Swiss offer

First British F-35 completes transatlantic crossing

Hindustan Aeronautics hands over first Tejas jets

Seven killed in Turkey military chopper crash: army

NANO TECH
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China launches new carrier rocket: state media

China's new launch center to get new viewing areas

NANO TECH
New artificial intelligence beats tactical experts in combat simulation

Thales, Cisco sign cybersecurity agreement

China's top internet regulator steps down

How well do facial recognition algorithms cope with a million strangers?

NANO TECH
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

NANO TECH
Tiniest imperfections make big impacts in nano-patterned materials

DNA shaping up to be ideal framework for rationally designed nanostructures

New 'ukidama' nanoparticle structure revealed

Shaping atomically thin materials in suspended structures

NANO TECH
Exide Technologies gets $30.7 million DOD grant

Implant Sciences gets Canadian explosives detection contract

Hesco achieves body armor certification

IEE supplies display units for IED jamming devices

NANO TECH
Tiniest imperfections make big impacts in nano-patterned materials

DNA shaping up to be ideal framework for rationally designed nanostructures

New 'ukidama' nanoparticle structure revealed

Shaping atomically thin materials in suspended structures

NANO TECH
Scientists unveil light-powered molecular motors

Google buys French startup that helps machines see

Chinese firm Midea gets over 50% of Germany's Kuka

Grade-school students teach a robot to help themselves learn geometry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.