Speeding through nanowire by Staff Writers Dresden, Germany (SPX) Feb 08, 2022
Smaller chips, faster computers, less energy consumption. Novel concepts based on semiconductor nanowires are expected to make transistors in microelectronic circuits better and more efficient. Electron mobility plays a key role in this: The faster electrons can accelerate in these tiny wires, the faster a transistor can switch and the less energy it requires. A team of researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the TU Dresden and NaMLab has now succeeded in experimentally demonstrating that electron mobility in nanowires is remarkably enhanced when the shell places the wire core under tensile strain. This phenomenon offers novel opportunities for the development of ultrafast transistors. Nanowires have a unique property: These ultra-thin wires can sustain very high elastic strains without damaging the crystal structure of the material. And yet the materials themselves are not unusual. Gallium arsenide, for example, is widely used in industrial manufacturing, and is known to have a high intrinsic electron mobility.
Tension creates speed "We influence the effective mass of electrons in the core. The electrons become lighter, so to speak, which makes them more mobile," explained Dr. Emmanouil Dimakis, scientist at the HZDR's Institute of Ion Beam Physics and Materials Research and initiator of the recently published study. What started out as a theoretical prediction has now been proven experimentally by the researchers in the recently published study. "We knew that the electrons in the core ought to be even more mobile in the tensile-strained crystal structure. But what we did not know was the extent to which the wire shell would affect electron mobility in the core. The core is extremely thin, allowing electrons to interact with the shell and be scattered by it," remarked Dimakis. A series of measurements and tests demonstrated this effect: Despite interaction with the shell, electrons in the core of the wires under investigation moved approximately thirty percent faster at room temperature than electrons in comparable nanowires that were strain-free or in bulk gallium arsenide.
Revealing the core "We practically give the electrons a kick and they start oscillating in the wire," explained PD Dr. Alexej Pashkin, who optimized the measurements for testing the core-shell nanowires under investigation in collaboration with his team at the HZDR. Comparing the results with models reveals how the electrons move: The higher their speed and the fewer obstacles they encounter, the longer the oscillation lasts. "This is actually a standard technique. But this time we did not measure the whole wire - comprising the core and the shell - but only the tiny core. This was a new challenge for us. The core accounts for around one percent of the material. In other words, we excite about a hundred times fewer electrons and get a signal that is a hundred times weaker," stated Pashkin. Consequently, the choice of sample was also a critical step. A typical sample contains an average of around 20,000 to 100,000 nanowires on a piece of substrate measuring roughly one square millimeter. If the wires are spaced even closer together on the sample, an undesirable effect can occur: Neighboring wires interact with each other, creating a signal similar to that of a single, thicker wire, and distorting the measurements. If this effect is not detected, the electron velocity obtained is too low. To rule out such interference, the Dresden research team carried out additional modelling as well as a series of measurements for nanowires with different densities.
Prototypes for fast transistors The researchers' next step will be to develop the first prototypes based on the studied nanowires and to test their suitability for use. To do this, they intend to apply, test and enhance metallic contacts on the nanowires, as well as testing the doping of nanowires with silicon and optimizing manufacturing processes.
Research Report: High electron mobility in strained GaAs nanowires
Columns designed from nanographenes Wurzburg, Germany (SPX) Feb 08, 2022 Graphene is a carbon material that forms extremely thin layers. Because of its unusual properties, it is interesting for many technical applications. This also applies to polycyclic aromatic hydrocarbons (PAHs), which can be regarded as cut-outs of graphene. They are considered promising materials for organic photovoltaics or for field-effect transistors. Large, single-layer PAH molecules - often referred to as nanographenes - are well researched. In contrast, little is known about PAHs arranged i ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |