. Nano Technology News .




NANO TECH
Researchers create nanoscale spinning magnetic droplets
by Staff Writers
Raleigh NC (SPX) Mar 20, 2013


File image.

Researchers have successfully created a magnetic soliton - a nano-sized, spinning droplet that was first theorized 35 years ago. These solitons have implications for the creation of magnetic, spin-based computers.

Solitons are waves, localized in space, that preserve their size and momentum. They were first observed in water. Solitons composed of light have proved useful for long distance, high speed information transmission. But droplet solitons had never been observed in a magnetic environment, although scientists believed they could exist there.

North Carolina State University mathematician Mark Hoefer had created a mathematical model of what such a soliton might look like. When physicist Johan Akerman and graduate student Majid Mohseni from Sweden's Royal Institute of Technology (KTH) and the University of Gothenburg got experimental data back that seemed to correspond with Hoefer's model, they decided to try and confirm the existence of a magnetic droplet soliton.

The physicists used a nanoscale wire to deliver a small amount of DC current to a magnet. All electrons possess angular momentum in the form of spin. Picture a spinning top. Angular momentum is what keeps that top upright, or pointed in a particular direction.

Each electron within the magnet is like a spinning top, and in magnets, all of the electrons' spins are aligned in roughly the same way. Putting DC current into that group of electrons injects energy into the magnetic system, changing the spin of the local electrons in that immediate area. The spins of the electrons then precess, or "lean" like a top does when it is no longer upright, which causes a tiny spinning magnetic droplet, or soliton, to form.

The scientists were able to detect the soliton's presence by measuring the frequency of the precession. They observed the soliton's unique signature - a pronounced drop in frequency coupled with a large jump in power output - and knew they had been successful.

"These solitons are called 'dissipative,' because magnets want to dissipate energy from precession," Hoefer says. "They maintain their stability by balancing the amount of energy coming into the system via the DC current with the amount going out, and by balancing the nonlinearity, or amplitude, with dispersion, or a tendency to spread out."

In addition to demonstrating the existence of these solitons, the researchers also noted some other interesting properties of the solitons, including oscillatory motion and a periodic deformation they referred to as "breathing."

The researchers' findings appear in Science.

"Solitons are excellent transmitters of information, so finding them in a magnetic system could have all sorts of implications for spin-based computing, from new ways to process information to higher density hard drives," Hoefer says.

S. M. Mohseni, S. R. Sani, J. Persson and T. N. Anh Nguyen fabricated the devices. S. M. Mohseni, S. Chung, and R. K. Dumas carried out device characterization. S. M. Mohseni, Ye. Pogoryelov, P. K. Muduli, A. Eklund, R. K. Dumas, S. Bonetti, A. Deac, M. Hoefer, and J. A kerman carried out the analysis. E. Iacocca and M. Hoefer performed micromagnetic simulations. All authors co-wrote the manuscript.

.


Related Links
North Carolina State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Smallest Vibration Sensor in the Quantum World
Karlsruhe, Germany (SPX) Mar 20, 2013
Carbon nanotubes and magnetic molecules are considered building blocks of future nanoelectronic systems. Their electric and mechanical properties play an important role. Researchers of Karlsruhe Institute of Technology and French colleagues from Grenoble and Strasbourg have now found a way to combine both components on the atomic level and to build a quantum mechanical system with novel pr ... read more


NANO TECH
Listening for the Boom and Rattle of Supersonic Flight

Navy tasks Virginia Tech research team with reducing deafening roar of fighter jets

Eurocopter enters race for Polish chopper deal

Aerospace industry adapts to global marketplace

NANO TECH
China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

NANO TECH
Papers link top China university to army 'hacking' unit

Vietnam War whistleblower defends WikiLeaks 'hero'

Taiwan sets up Internet shield to tackle China 'hacking'

S. Korea tracks cyber attack to China, North still suspect

NANO TECH
Chinese leader Xi, Putin agree key energy deals

India is fourth largest energy consumer

'Earth Hour' evolves into springboard for wider action

The household carbon emission per capita in Northwestern China is only 2.05 tons CO2 per year

NANO TECH
NRL Nike Laser Focuses on Nuclear Fusion

Greenhouse gas emissions of cars could drop 80 percent by 2050

Shale gas in line for Britain tax breaks

Hybrid ribbons a gift for powerful batteries

NANO TECH
NGC Offers New High-Resolution Sensors for Hawk Air Defense System

Seven killed in Marine Corps training accident

UN staring down a barrel over arms treaty

Boeing Names Ferra Engineering a Supplier for Extended Range JDAMs

NANO TECH
Smallest Vibration Sensor in the Quantum World

Researchers create nanoscale spinning magnetic droplets

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators

NANO TECH
Robots joining China businesses, factories

Technique could help designers predict how legged robots will move on granular surfaces

Digital 'talking head' speaks for computer

Google buys machine learning startup




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement