Nano Technology News  
NANO TECH
Nanotechnology reveals hidden depths of bacterial 'machines'
by Staff Writers
Liverpool UK (SPX) Jun 15, 2017


This is an illustration of a carboxysome. Credit Dr Luning Liu, University of Liverpool

New research from the University of Liverpool, published in the journal Nanoscale, has probed the structure and material properties of protein machines in bacteria, which have the capacity to convert carbon dioxide into sugar through photosynthesis.

Cyanobacteria are a phylum of bacteria that produce oxygen and energy during photosynthesis, similar to green plants. They are among the most abundant organisms in oceans and fresh water. Unique internal 'machines' in cyanobacteria, called carboxysomes, allow the organisms to convert carbon dioxide to sugar and provide impacts on global biomass production and our environment.

Carboxysomes are nanoscale polyhedral structures that are made of several types of proteins and enzymes. So far, little is known about how these 'machines' are constructed and maintain their organisation to perform carbon fixation activity.

Researchers from the University's Institute of Integrative Biology, led by Royal Society University Research Fellow Dr Luning Liu, examined in depth the native structure and mechanical stiffness of carboxysomes using advanced microscopes and biochemical approaches.

For the first time, the researchers were able to biochemically purify active carboxysomes from cyanobacteria and characterize their carbon fixation activity and protein composition. They then used electron microscopy and atomic force microscopy to visualise the morphology and internal protein organization of these bacterial machines.

Furthermore, the intrinsic mechanical properties of the three-dimensional structures were determined for the first time. Though structurally resembling polyhedral viruses, carboxysomes were revealed to be much softer and structurally flexible, which is correlated to their formation dynamics and regulation in bacteria.

Dr Liu, said: "It's exciting that we can make the first 'contact' with these nano-structures and understand how they are self-organised and shaped using state-of-the-art techniques available at the University. Our findings provide new clues about the relationship between the structure and functionality of native carboxysomes."

The self-assembly and modularity features of carboxysomes make them interesting systems for nanoscientists, synthetic biologists and bioengineers, who hope to find ways to design new nanomaterials and nano-bioreactors.

"We're now just starting to understand how these bacterial machines are built and work in nature. Our long-term vision is to harness the knowledge to make further steps towards better design and engineering of bio-inspired machines," added Dr Liu, "The knowledge and techniques can be extended to other biological machines."

Research paper: 'Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes'

NANO TECH
Sensing the nanoscale with visible light, and the fundamentals of disordered waves
New York NY (SPX) Jun 08, 2017
We cannot see atoms with the naked eye because they are so small relative to the wavelength of light. This is an instance of a general rule in optics - light is insensitive to features which are much smaller than the optical wavelength. However, a new experiment appearing in Science shows that features that are even 100 times smaller than the wavelength can still be sensed by light. Hanan ... read more

Related Links
University of Liverpool
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

NANO TECH
Seeds of 5,000-year-old tree bud after returning from space

Reusable craft are in CASIC's plans

China discloses Chang'e 5 lunar probe landing site

China to provide more opportunities to private space companies

NANO TECH
SeaGlass brings transparency to cell phone surveillance

Saab starts cyber-security company

'Tallinn Manual 2.0' -- the rulebook for cyberwar

Random numbers: Hard times ahead for hackers

NANO TECH
Cube Quest Challenge Team Spotlight: Cislunar Explorers

Winning plans for CubeSats to the Moon

Printing bricks from moondust using the Sun's heat

NASA selects ASU's ShadowCam for moon mission

NANO TECH
UNIST researchers engineer transformer-like carbon nanostructure

Sensing the nanoscale with visible light, and the fundamentals of disordered waves

Nanosized silicon heater and thermometer combined to fight cancer

Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

NANO TECH
NASA satellites image, measure Florida's extreme rainfall

The heat is on for Sentinel-3B

exactEarth Launches Revolutionary Global Real-Time Maritime Tracking and Information Service

Earth is a jewel, says astronaut after six months away

NANO TECH
UNIST researchers engineer transformer-like carbon nanostructure

Sensing the nanoscale with visible light, and the fundamentals of disordered waves

Nanosized silicon heater and thermometer combined to fight cancer

Ultrafast nanophotonics: Turmoil in sluggish electrons' existence

NANO TECH
Apple wants to rock the market with HomePod, faces challenges

Autonomous machines edge towards greater independence

AI gets so-so grade in Chinese university entrance exam

AI 'good for the world'... says ultra-lifelike robot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.