Nano Technology News  
NANO TECH
Nanoparticles remain unpredictable
by Staff Writers
Zurich, Switzerland (SPX) Apr 20, 2017


The researchers evaluated the experimental data published in the scientific literature using a network analysis. This analysis reveals which types of nanoparticles (blue) have been studied under which environmental conditions (red). Image courtesy Thomas Kast.

The nanotech industry is booming. Every year, several thousands of tonnes of man-made nanoparticles are produced worldwide; sooner or later, a certain part of them will end up in bodies of water or soil. But even experts find it difficult to say exactly what happens to them there. It is a complex question, not only because there are many different types of man-made (engineered) nanoparticles, but also because the particles behave differently in the environment depending on the prevailing conditions.

Researchers led by Martin Scheringer, Senior Scientist at the Department of Chemistry and Applied Biosciences, wanted to bring some clarity to this issue. They reviewed 270 scientific studies, and the nearly 1,000 laboratory experiments described in them, looking for patterns in the behaviour of engineered nanoparticles. The goal was to make universal predictions about the behaviour of the particles.

However, the researchers found a very mixed picture when they looked at the data. "The situation is more complex than many scientists would previously have predicted," says Scheringer. "We need to recognise that we can't draw a uniform picture with the data available to us today."

Nicole Sani-Kast, a doctoral student in Scheringer's group and first author of the analysis published in the journal PNAS, adds: "Engineered nanoparticles behave very dynamically and are highly reactive. They attach themselves to everything they find: to other nanoparticles in order to form agglomerates, or to other molecules present in the environment."

Network analysis
To what exactly the particles react, and how quickly, depends on various factors such as the acidity of the water or soil, the concentration of the existing minerals and salts, and above all, the composition of the organic substances dissolved in the water or present in the soil. The fact that the engineered nanoparticles often have a surface coating makes things even more complicated. Depending on the environmental conditions, the particles retain or lose their coating, which in turn influences their reaction behaviour.

To evaluate the results available in the literature, Sani-Kast used a network analysis for the first time in this research field. It is a technique familiar in social research for measuring networks of social relations, and allowed her to show that the data available on engineered nanoparticles is inconsistent, insufficiently diverse and poorly structured.

More method for machine learning
"If more structured, consistent and sufficiently diverse data were available, it may be possible to discover universal patterns using machine learning methods," says Scheringer, "but we're not there yet." Enough structured experimental data must first be available.

"In order for the scientific community to carry out such experiments in a systematic and standardised manner, some kind of coordination is necessary," adds Sani-Kast, but she is aware that such work is difficult to coordinate. Scientists are generally well known for preferring to explore new methods and conditions rather than routinely performing standardized experiments.

Distinguishing man-made and natural nanoparticles
In addition to the lack of systematic research, there is also a second tangible problem in researching the behaviour of engineered nanoparticles: many engineered nanoparticles consist of chemical compounds that occur naturally in the soil. So far it has been difficult to measure the engineered particles in the environment since it is hard to distinguish them from naturally occurring particles with the same chemical composition.

However, researchers at ETH Zurich's Department of Chemistry and Applied Biosciences, under the direction of ETH Professor Detlef Gunther, have recently established an effective method that makes such a distinction possible in routine investigations. They used a state-of-the-art and highly sensitive mass spectrometry technique (called spICP-TOF mass spectrometry) to determine which chemical elements make up individual nanoparticles in a sample.

In collaboration with scientists from the University of Vienna, the ETH researchers applied the method to soil samples with natural cerium-containing particles, into which they mixed engineered cerium dioxide nanoparticles. Using machine learning methods, which were ideally suited to this particular issue, the researchers were able to identify differences in the chemical fingerprints of the two particle classes.

"While artificially produced nanoparticles often consist of a single compound, natural nanoparticles usually still contain a number of additional chemical elements," explains Alexander Gundlach-Graham, a postdoc in Gunther's group.

The new measuring method is very sensitive: the scientists were able to measure engineered particles in samples with up to one hundred times more natural particles.

Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbuhler K, Scheringer M: A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. PNAS 2017, 114: E1756-E1765, doi: 10.1073/pnas.1608106114

Praetorius A, Gundlach-Graham A, Goldberg E, Fabienke W, Navratilova J, Gondikas A, Kaegi R, Gunther D, Hofmann T, von der Kammer F: Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environmental Science: Nano 2017, 4: 307-314, doi: 10.1039/c6en00455e

NANO TECH
Nanotubes that build themselves
Lund, Sweden (SPX) Apr 20, 2017
Researchers from Lund University in Sweden have succeeded in producing nanotubes from a single building block using so-called molecular self-recognition. The tube can also change shape depending on the surrounding environment. The results can contribute to the future development of transport channels for drugs through the cell membrane. In the present study, researchers from Lund Universit ... read more

Related Links
ETH Zurich
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Pressurized Perlan glider reaches new high altitude on journey to edge of space

Boeing pulls out of 'unfair' Belgian F-16 fighter replacement bid

Kazakhstan buys two more Airbus C295 aircraft

Singapore's air force upgrading Apache warfare systems

NANO TECH
Are human space babies conceivable?

China's first cargo spacecraft docks with space lab

Tianzhou-1 space truck soars into orbit

China launches first cargo spacecraft Tianzhou-1

NANO TECH
Denmark says Russia hacked defence ministry emails

Baking Hack Resistance Directly into Hardware

Web pioneer slams UK, US calls to weaken encryption

German military to launch cyber command

NANO TECH
Swedish Institute of Space Physics goes back to the Moon

India dreams of harvesting lunar dust to power fusion rectors

NASA Scientists Find Dynamo at Lunar Core May Have Formed Magnetic Field

How a young-looking lunar volcano hides its true age

NANO TECH
Nanoparticles remain unpredictable

Nanotubes that build themselves

Better living through pressure: Functional nanomaterials made easy

Self-assembling polymers provide thin nanowire template

NANO TECH
Field trials underway for Russia's next-generation battle tank

Australia receives new Hercules armored recovery vehicles

Canadian army to modernize training simulation system

Leidos to provide TUAS support for U.S. Army

NANO TECH
Nanoparticles remain unpredictable

Nanotubes that build themselves

Better living through pressure: Functional nanomaterials made easy

Self-assembling polymers provide thin nanowire template

NANO TECH
Human prejudices sneak into artificial intelligence systems

Brane Craft Proposal Awarded Phase 2 by NASA

Lockheed Martin gets license for military exoskeleton tech

Facebook launches digital assistant 'M' in US









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.