Nano Technology News  
NANO TECH
Nanocrystal self-assembly sheds its secrets
by Staff Writers
Boston MA (SPX) Apr 01, 2016


A scanning electron micrograph of a nanocrystal superlattice shows long-range ordering over large domains. Image courtesy of the Tisdale Lab.

The secret to a long-hidden magic trick behind the self-assembly of nanocrystal structures is starting to be revealed.

The transformation of simple colloidal particles - bits of matter suspended in solution - into tightly packed, beautiful lace-like meshes, or superlattices, has puzzled researchers for decades. Pretty pictures in themselves, these tiny superlattices, also called quantum dots, are being used to create more vivid display screens as well as arrays of optical sensory devices. The ultimate potential of quantum dots to make any surface into a smart screen or energy source hinges, in part, on understanding how they form.

Through a combination of techniques including controlled solvent evaporation and synchrotron X-ray scattering, the real time self-assembly of nanocrystal structures has now become observable in-situ. The findings were reported in the journal Nature Materials in a paper by Assistant Professor William A. Tisdale and grad student Mark C. Weidman, both at MIT's Department of Chemical Engineering, and Detlef-M. Smilgies at the Cornell High Energy Synchrotron Source (CHESS).

The researchers anticipate their new findings will have implications for the direct manipulation of resulting superlattices, with the possibility of on-demand fabrication and the potential to generate principles for the formation of related soft materials such as proteins and polymers.

Quantum dot disco
Tisdale and his colleagues are among the many groups who study hard semiconductor nanocrystals with surfaces coated with organic molecules. These solution-processable electronic materials are on store shelves now under a variety of names, incorporated into everything from lighting displays to TVs. They also are being eyed for making efficient solar cells and other energy conversion devices due to their ease of fabrication and low-cost manufacturing processes.

The broader adoption of these nanocrystals into other energy conversion technologies has been limited, in part, by the lack of knowledge about how they self-assemble, going from colloidal particles (like tiny Styrofoam balls suspended in a liquid) to superlattices (picture those same balls now dry, packed, and aligned).

Techniques including electron microscopy and dynamic light scattering have uncovered some aspects of the starting colloidal state and the final superlattice structure, but they have not illuminated the transition between these two states. In fact, such foundational work dates back to the mid-1990s with Moungi Bawendi's group at MIT.

"In the past 10 to 15 years, a lot of progress has been made in making very beautiful nanocrystal structures," Tisdale says. "However, there's still a lot of debate about why they assemble into each configuration. Is it ligand entropy or the faceting of the nanocrystals? The depth of information provided by watching the entire self-organization process unfold in real time can help answer these questions."

Chamber of secrets
To make the nanoscale movie above, Tisdale's graduate student and co-author Mark Weidman took advantage of a Cornell-developed experimental chamber and a recently developed dual detector setup with two fast area detectors, while environmental conditions were changed during the formation of superlattices. Using lead sulfide nanocrystals, Weidman was able to conduct simultaneous small-angle X-ray scattering (capturing the structure of the superlattice) and wide-angle X-ray scattering (capturing atomic scale orientation and alignment of single particles) observations during the evaporation of a solvent.

"We believe this was the first experiment that has allowed us to watch in real time and in a native environment how self-assembly occurs," Tisdale says. "These experiments would not have been possible without the experimental capabilities developed by Detlef and the CHESS team."

The use of nanocrystals with a heavy element (lead) and the brightness of the synchrotron X-ray source enabled sufficiently fast data collection that self-assembly could be observed in real time, resulting in compelling images and movies of the process.

A fine mesh
The discovery may lead to refined models for self-assembly of a wide range of organic soft materials. Moreover, the ability to watch the structure as it is evolving in real time also holds promise for intervening or directing the system into desired configurations, presaging a future how-to guide for creating superlattices.

Tisdale says that much more work needs to be done to gain insights about why nanocrystals self-assemble they way they do. He and his team plan to use their new technique to manipulate parameters such as solvent conditions as well as the size and shape of nanocrystals, and to more closely study the ligands on the surface as they seem to be the key driver for self-assembly.

"We hope that this study and technique will help to increase our understanding of colloidal self-assembly and, in the long term, enable us to direct nanoscale self-assembly toward a desired structure," Weidman adds.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanolight at the edge
Sasiko Kalea, Spain (SPX) Mar 28, 2016
Researchers from CIC nanoGUNE, in collaboration with ICFO and Graphenea, have demonstrated how infrared light can be captured by nanostructures made of graphene. This happens when light couples to charge oscillations in the graphene. The resulting mixture of light and charge oscillations - called plasmon - can be squeezed into record-small volumes - millions times smaller than in conventio ... read more


NANO TECH
Rheinmetall providing training aids for KC-390

Profits soar at China's big three airlines

UK defence chief says Qatar warplane deal 'on the table'

New material could make aircraft deicers a thing of the past

NANO TECH
Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

NANO TECH
Grieving father begs Apple, enlists hackers over son's iPhone

Apple-FBI clash ends in stalemate

FBI hacks attacker's iPhone, drops Apple suit

Apple says San Bernardino iPhone could affect NY case

NANO TECH
Moon Mission: A Blueprint for the Red Planet

The Moon thought to play a major role in maintaining Earth's magnetic field

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

NANO TECH
Nanolight at the edge

Nano-enhanced textiles clean themselves with light

Nature-inspired nanotubes that assemble themselves, with precision

CWRU researchers make biosensor 1 million times more sensitive

NANO TECH
BAE Systems modernizing Sweden's CV90 vehicles

Defense contractors pay $8M to settle defective flares allegations

U.S. Army issues initial order for Humvee replacement vehicles

Oshkosh recapitalizing Army's tactical trucks

NANO TECH
Nanolight at the edge

Nano-enhanced textiles clean themselves with light

Nature-inspired nanotubes that assemble themselves, with precision

CWRU researchers make biosensor 1 million times more sensitive

NANO TECH
No plans for killer US military robots... yet

Program Aims to Facilitate Robotic Servicing of Geosynchronous Satellites

Moving microswimmers with tiny swirling flows

Microsoft grounds foul-mouthed teen-speak bot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.