Molecular nanoribbons as electronic highways by Staff Writers Umea, Sweden (SPX) Oct 07, 2015
Physicists at Umea University have, together with researchers at UC Berkeley, USA, developed a method to synthesise a unique and novel type of material which resembles a graphene nanoribbon but in molecular form. This material could be important for the further development of organic solar cells. The results have been published in the scientific journal ACS Nano. The nanoribbons are comprised of molecules with the chemical formula [6,6]-phenyl-C61-butyric acid methyl ester. For short it is denoted PCBM, and in practice it is a fullerene molecule (a football-shaped carbon molecule) with an attached side arm to increase its solubility. PCBM molecules are commonly used in organic solar cells since they have a very good ability to transport free electrons that are "generated" by solar light. The researchers at Umea University and UC Berkeley have now developed a method to arrange such molecules into thin, crystalline nanoribbons that are only four nanometres wide. The nanoribbons are grown in a solution process with quite high efficiency and all nanoribbons have a unique morphology with edges in a zigzag. "It is a very intriguing material and the method is quite simple. The material resembles the more commonly known graphene nanoribbons, but in our material each carbon atom is 'replaced' by a molecule," says Thomas Wagberg, associate professor at the Department of Physics, who has led the study. The findings are interesting for several reasons; it is the first time that structures with so small dimensions have been produced with this type of molecule, and the dimensions of the nanoribbons suggest that they should be ideal as "electronic highways" in organic solar cells. An organic solar cell usually consists of two types of material, one that conducts the electrons and one that conducts the "holes" that are left behind when the electron gets an energy boost from the incoming solar light (you can see the transport of "hole" as an empty space in traffic moving backwards in a traffic queue moving forwards). An electron conductor in organic solar cells should ideally form long pathways to the electrode but concurrently be thinner than 10-15 nanometres (approximately 10,000 times the thickness of a normal hair). The newly developed PCBM nanoribbons fulfil all these requirements. "Together with professor Ludvig Edman's group at the Department of Physics at Umea University, we are now investigating this material further as a potential component in organic solar cells in the hope of making such devices more efficient," says Thomas Wagberg. Our study is of course also interesting for fundamental reasons since it opens up possibilities to investigate important physical properties of molecular materials with nanoscale Gracia-Espino, Eduardo; Barzegar, Hamid; Sharifi, Tiva; Yan, Aiming; Zettl, Alex; Wagberg, Thomas: Fabrication of One Dimensional Zig-Zag [6,6]-Phenyl-C61-butyric acid methyl ester Nanoribbons from Two Dimensional Nanosheets". ACS Nano
Related Links Umea University Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |