Nano Technology News  
NANO TECH
Intracellular recordings using nanotower electrodes
by Staff Writers
Toyohashi, Japan (SPX) Apr 15, 2016


120um-height 'nanotower' electrode is punching a cell membrane. Silicon growth technology and three-dimensional nano/microfabrication techniques realize such high-aspect-ratio intracellular electrodes. Image courtesy Toyohashi University Of Technology. For a larger version of this image please go here.

Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. For acquiring a large amplitude and a high quality of neuronal signals, intracellular recording is a powerful methodology compared to extracellular recording to measure the voltage or current across the cell membranes.

Nanowire- and nanotube-based devices have been developed for the intracellular recording applications to demonstrate the advantages of these devices having high spatial resolution and high sensitivity.

However, length of these nanowire/nanotube electrode devices is currently limited to less than 10 um due to process issues that occur during fabrication of high-aspect-ratio nanoscale devices, which are more than 10-um long. Thus, conventional nanodevices are not applicable to neurons/cells within thick biological tissues, including brain slices and brain in vivo.

A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed three-dimensional microneed-e-based nanoscale-tipped electrodes (NTEs) that are longer than 100 um.

The needle length exceeds that of the conventional nanowire/nanotube-based intracellular devices, thus expanding the range of applications of nanodevices in intracellular recording, such as deep tissue penetration. Additionally, they perform intracellular recordings using muscle cells.

"A technological challenge in electrophysiology is intracellular recordings within a thick biological tissue. For example, a needle length of more than 40 um is necessary for performing brain slice experiments.

"However, it is almost impossible to penetrate nanoscale diameter needles with a high-aspect-ratio, because of the long hair-like nanostructure that has insufficient stiffness.

"On the other hand, our NTE, which is 120-um-long cone-shaped electrode, has sufficient stiffness to punch tissues and cells", explains the first author PhD candidate, Yoshihiro Kubota.

The leader of the research team, Associate Professor Takeshi Kawano said "Although we demonstrated the preliminary results of our NTE device, the batch fabrication of such intracellular electrodes, which have a needle length more than 100 um, should lead to an advancement in the device technologies.

This will eventually lead to realization of multisite, depth-intracellular recordings for biological tissues, including brain slices and brain in vivo, which are beyond the capability of conventional intracellular devices."

As addressed by the research team, the NTE has the potential to be used in cells that are deep within a biological tissue, including brain slice and brain in vivo, thus accelerating the understanding of the brain.

Yoshihiro Kubota, Hideo Oi, Hirohito Sawahata, Akihiro Goryu, Yoriko Ando, Rika Numano, Makoto Ishida, and Takeshi Kawano (2016). Nanoscale-tipped high-aspect-ratio vertical microneedle electrodes for intracellular recordings,


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Toyohashi University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
'Honeycomb' of nanotubes could boost genetic engineering
Rochester NY (SPX) Apr 13, 2016
Researchers have developed a new and highly efficient method for gene transfer. The technique, which involves culturing and transfecting cells with genetic material on an array of carbon nanotubes, appears to overcome the limitations of other gene editing technologies. The device, which is described in a study published in the journal Small, is the product of a collaboration between resear ... read more


NANO TECH
ASRAAM missile tests for F-35 underway

StandardAero to upgrade engines on C-130H aircraft

Algeria orders more Russian Mi-28NE Night Hunter helicopters

F-22A Raptors heading to Europe

NANO TECH
China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

NANO TECH
Microsoft sues US over secret warrants to search email

Hackers helped FBI crack San Bernardino iPhone: report

US could force firms to help break encryption, under new bill

Updated Qbot virus attacks public sector organizations

NANO TECH
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

NANO TECH
'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes

Nanoporous material's strange "breathing" behavior

NANO TECH
Former US defense contractor sentenced for passing secrets to India

Live-fire test for British Army's new Ajax armored vehicle

Bring back our gear, Israel's army begs ex-soldiers

Australia approved for purchase of small diameter bombs

NANO TECH
'Honeycomb' of nanotubes could boost genetic engineering

A movie of the microworld: Physicists create nanoparticle picture series

NREL reveals potential for capturing waste heat via nanotubes

Nanoporous material's strange "breathing" behavior

NANO TECH
Humanoid robotics and computer avatars could help treat social disorders

Scientists invent robotic 'artist' that spray paints giant murals

Touching a robot can elicit physiological arousal in humans

Private equity firm acquires iRobot defense business









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.