. Nano Technology News .




.
NANO TECH
Graphene lights up with new possibilities
by Staff Writers
Houston TX (SPX) Dec 01, 2011

Making a superlattice with patterns of hydrogenated graphene is the first step in making the material suitable for organic chemistry. The process was developed in the Rice University lab of chemist James Tour. (Credit Tour Lab/Rice University)

The future brightened for organic chemistry when researchers at Rice University found a highly controllable way to attach organic molecules to pristine graphene, making the miracle material suitable for a range of new applications.

The Rice lab of chemist James Tour, building upon a set of previous finds in the manipulation of graphene, discovered a two-step method that turned what was a single-atom-thick sheet of carbon into a superlattice for use in organic chemistry. The work could lead to advances in graphene-based chemical sensors, thermoelectric devices and metamaterials.

The work appeared this week in the online journal Nature Communications.

Graphene alone is inert to many organic reactions and, as a semimetal, has no band gap; this limits its usefulness in electronics. But the project led by the Tour Lab's Zhengzong Sun and Rice graduate Cary Pint, now a researcher at Intel, demonstrated that graphene, the strongest material there is because of the robust nature of carbon-carbon bonds, can be made suitable for novel types of chemistry.

Until now there was no way to attach molecules to the basal plane of a sheet of graphene, said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. "They would mostly go to the edges, not the interior," he said.

"But with this two-step technique, we can hydrogenate graphene to make a particular pattern and then attach molecules to where those hydrogens were.

"This is useful to make, for example, chemical sensors in which you want peptides, DNA nucleotides or saccharides projected upward in discrete places along a device. The reactivity at those sites is very fast relative to placing molecules just at the edges. Now we get to choose where they go."

The first step in the process involved creating a lithographic pattern to induce the attachment of hydrogen atoms to specific domains of graphene's honeycomb matrix; this restructure turned it into a two-dimensional, semiconducting superlattice called graphane.

The hydrogen atoms were generated by a hot filament using an approach developed by Robert Hauge, a distinguished faculty fellow in chemistry at Rice and co-author of the paper.

The lab showed its ability to dot graphene with finely wrought graphane islands when it dropped microscopic text and an image of Rice's classic Owl mascot, about three times the width of a human hair, onto a tiny sheet and then spin-coated it with a fluorophore.

Graphene naturally quenches fluorescent molecules, but graphane does not, so the Owl literally lit up when viewed with a new technique called fluorescence quenching microscopy (FQM).

FQM allowed the researchers to see patterns with a resolution as small as one micron, the limit of conventional lithography available to them. Finer patterning is possible with the right equipment, they reasoned.

In the next step, the lab exposed the material to diazonium salts that spontaneously attacked the islands' carbon-hydrogen bonds. The salts had the interesting effect of eliminating the hydrogen atoms, leaving a structure of carbon-carbon sp3 bonds that are more amenable to further functionalization with other organics.

"What we do with this paper is go from the graphene-graphane superlattice to a hybrid, a more complicated superlattice," said Sun, who recently earned his doctorate at Rice.

"We want to make functional changes to materials where we can control the position, the bond types, the functional groups and the concentrations.

"In the future - and it might be years - you should be able to make a device with one kind of functional growth in one area and another functional growth in another area. They will work differently but still be part of one compact, cheap device," he said. "In the beginning, there was very little organic chemistry you could do with graphene. Now we can do almost all of it. This opens up a lot of possibilities."

The paper's co-authors are graduate students Daniela Marcano, Gedeng Ruan and Zheng Yan, former graduate student Jun Yao, postdoctoral researcher Yu Zhu and visiting student Chenguang Zhang, all of Rice.

The work was supported by the Air Force Office of Scientific Research, Sandia National Laboratory, the Nanoscale Science and Engineering Initiative of the National Science Foundation and the Office of Naval Research MURI graphene program.

Read the abstract here.

Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Graphene earns its stripes
London UK (SPX) Dec 01, 2011
Researchers from the London Centre for Nanotechnology (LCN) have discovered electronic stripes, called 'charge density waves', on the surface of the graphene sheets that make up a graphitic superconductor. This is the first time these stripes have been seen on graphene, and the finding is likely to have profound implications for the exploitation of this recently discovered material, which ... read more


NANO TECH
Air France suspends maintenance in China

US 'concerned' about EU airline carbon rules

German airline seeks Chinese, Gulf investors: report

Brazil a serious rival in air transport

NANO TECH
15 patents granted for Chinese space docking technology

China plans major effort in pursuing manned space technology

Tiangong-1 orbiter enters long-term operation management

China launches two satellites: state media

NANO TECH
Internet has become 'surveillance machine': Assange

December court date for Manning in WikiLeaks case

Foreign cyber attack hits US infrastructure: expert

Finland facing large-scale hacking attacks: police

NANO TECH
Ireland-Britain 'supergrid' said feasible

Half of greenhouse gases emitted by five nations: report

Banks lent 232 bln euros for coal plants: climate groups

China to raise industrial power prices: Xinhua

NANO TECH
Oil prices dip on weak China data

Greenpeace hijacks oil firms' Greenland talks

A smarter way to make ultraviolet light beams

Exxon's Kurdish deal has political fallout

NANO TECH
Boeing Receives Contract to Upgrade F-15C Trainers

Lockheed Martin Awarded Contract to Support US Army Maneuver Training

New Weapon for Australian Soldiers

Cambodia landmine summit sparks hopes for survivor

NANO TECH
Imperfections may improve graphene sensors

Graphene lights up with new possibilities

Graphene earns its stripes

Tiny levers, big moves in piezoelectric sensors

NANO TECH
Insect cyborgs may become first responders, search and monitor hazardous environs

Researchers design steady-handed robot for brain surgery

neuroArm: Robotic Arms Lend a Healing Touch

Insect cyborgs may become first responders, search and monitor hazardous environs


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement