Nano Technology News  
NANO TECH
Defects help nanomaterial soak up more pollutant in less time
by Staff Writers
Houston TX (SPX) Mar 14, 2019

illustration only

Cleaning pollutants from water with a defective filter sounds like a non-starter, but a recent study by chemical engineers at Rice University found that the right-sized defects helped a molecular sieve soak up more perfluorooctanesulfonic acid (PFOS) in less time.

In a study in the American Chemical Society journal ACS Sustainable Chemistry and Engineering, Rice University researchers Michael Wong, Chelsea Clark and colleagues showed that a highly porous, Swiss cheese-like nanomaterial called a metal-organic framework (MOF) was faster at soaking up PFOS from polluted water, and that it could hold more PFOS, when additional nanometer-sized holes ("defects") were built into the MOF.

PFOS was used for decades in consumer products like stain-resistant fabrics and is the best-known member of a family of toxic chemicals called "per- and polyfluoroalkyl substances" (PFAS), which the Environmental Protection Agency (EPA) describes as "very persistent in the environment and in the human body - meaning they don't break down and they can accumulate over time."

Wong, professor and chair of Rice's Department of Chemical and Biomolecular Engineering and a professor of chemistry, said, "We are taking a step in the right direction toward developing materials that can effectively treat industrial wastewaters in the parts-per-billion and parts-per-million level of total PFAS contamination, which is very difficult to do using current technologies like granular activated carbon or activated sludge-based systems."

Wong said MOFs, three-dimensional structures that self-assemble when metal ions interact with organic molecules called linkers, seemed like good candidates for PFAS remediation because they are highly porous and have been used to absorb and hold significant amounts of specific target molecules in previous applications.

Some MOFs, for example, have a surface area larger than a football field per gram, and more than 20,000 kinds of MOFs are documented. In addition, chemists can tune MOF properties - varying their structure, pore sizes and functions - by tinkering with the synthesis, or chemical recipe that produces them.

Such was the case with Rice's PFAS sorbent. Clark, a graduate student in Wong's Catalysis and Nanomaterials Laboratory, began with a well-characterized MOF called UiO-66, and conducted dozens of experiments to see how various concentrations of hydrochloric acid changed the properties of the final product. She found she could introduce structural defects of various sizes with the method - like making Swiss cheese with extra-big holes.

"The large-pore defects are essentially their own sites for PFOS adsorption via hydrophobic interactions," Clark said. "They improve the adsorption behavior by increasing the space for the PFOS molecules."

Clark tested variants of UiO-66 with different sizes and amounts of defects to determine which variety soaked up the most PFAS from heavily polluted water in the least amount of time.

"We believe that introducing random, large-pore defects while simultaneously maintaining the majority of the porous structure played a large role in improving the adsorption capacity of the MOF," she said. "This also maintained the fast adsorption kinetics, which is very important for wastewater remediation applications where contact times are short."

Wong said the study's focus on industrial concentrations of PFAS sets it apart from most previously published work, which has focused on cleaning polluted drinking water to meet the current federal standards of 70 parts per trillion. While treatment technologies like activated carbon and ion exchange resins can be effective for cleaning low-level concentrations of PFAS from drinking water, they are far less effective for treating high-concentration industrial waste.

Although PFAS use has been heavily restricted by international treaty since 2009, the chemicals are still used in semiconductor manufacturing and chrome plating, where wastewater can contain as much as one gram of PFAS per liter of water, or about 14 billion times the current EPA limit for safe drinking water.

"In general for carbon-based materials and ion-exchange resins, there is a trade-off between adsorption capacity and adsorption rate as you increase the pore size of the material," Wong said. "In other words, the more PFAS a material can soak up and trap, the longer it takes to fill up. In addition, carbon-based materials have been shown to be mostly ineffective at removing shorter-chain PFASs from wastewater.

"We found that our material combines high-capacity and fast-adsorption kinetics and also is effective for both long- and short-chain perfluoroalkyl sulfonates," he said.

Wong said it's difficult to beat carbon-based materials in terms of cost because activated carbon has been a mainstay for environmental filtration for decades.

"But it's possible if MOFs become produced on a large-enough scale," he said. "There are a few companies looking into commercial-scale production of UiO-66, which is one reason we chose to work with it in this study."

Research paper


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
The holy grail of nanowire production
Lausanne, Switzerland (SPX) Feb 25, 2019
Nanowires have the potential to revolutionize the technology around us. Measuring just 5-100 nanometers in diameter (a nanometer is a millionth of a millimeter), these tiny, needle-shaped crystalline structures can alter how electricity or light passes through them. They can emit, concentrate and absorb light and could therefore be used to add optical functionalities to electronic chips. They could, for example, make it possible to generate lasers directly on silicon chips and to integrate single- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Lunar water molecules hop as surface temperature increases

NASA selects teams to study untouched Lunar samples

NASA selects experiments for possible Lunar flights in 2019

Gateway to the Moon

NANO TECH
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

NANO TECH
Germany to consult US over Huawei security fears: Merkel

US warns Germany a Huawei deal could hurt intelligence sharing

China backs Huawei not to be 'silent lamb' in US legal fight

Facebook blocks manipulation efforts in Britain, Romania

NANO TECH
Lunar water molecules hop as surface temperature increases

NASA selects teams to study untouched Lunar samples

NASA selects experiments for possible Lunar flights in 2019

Gateway to the Moon

NANO TECH
Researchers report new light-activated micro pump

Defects help nanomaterial soak up more pollutant in less time

The holy grail of nanowire production

A new spin in nano-electronics

NANO TECH
New key players in the methane cycle

High CO2 levels can destabilize marine layer clouds

On its 5th Anniversary, GPM Still Right as Rain

D-Orbit Signs Contract for launch and deployment services with Planet Labs

NANO TECH
Researchers report new light-activated micro pump

Defects help nanomaterial soak up more pollutant in less time

The holy grail of nanowire production

A new spin in nano-electronics

NANO TECH
A robotic leg, born without prior knowledge, learns to walk

Movie technology inspires wearable liquid unit that aims to harvest energy

Progress on lifelong learning machines shows potential for bio-inspired algorithms

Business with human and robotic exploration









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.