|
. | . |
|
by Staff Writers Helsinki, Finland (SPX) May 23, 2014
A new remedy has been found to tackle the difficulty of controlling layered nanomaterials. Control can be improved by simply bending the material. The mechanism was observed by Academy Research Fellow Pekka Koskinen from the Nanoscience Center of the University of Jyvaskyla together with his colleagues from the University of Massachusetts Amherst in the US. Bending decreases interaction between layers, making the material merely a stack of independent atomic layers. The group investigated the van der Waals nanomaterials which consist of stacked and loosely bound two-dimensional atomic layers. It is experimentally difficult to control the number of layers in the stacks - and each layer may affect the electric and optical properties of the material dramatically. It's as if the apparent color of a stack of papers would change wildly while adding or removing individual sheets, Pekka Koskinen illustrates the situation using a fictitious example. Bending effectively detaches the layers from each other. The mechanism was observed while investigating layered molybdenum disulphide but it is expected to be valid for the van der Waals materials in general. The results were published in the esteemed journal Physical Review Letters. According to Koskinen, the observation advances research in nanoelectronics and optoelectronics because it markedly simplifies the interpretation and understanding of the electronic and optical properties of layered materials. The research was computational and the found mechanism is still a prediction. In nanoscience, experimental and theoretical research advance side by side. This time the prediction came first, and now we eagerly await for an experimental confirmation, Koskinen says. P. Koskinen, I. Fampiou, A. Ramasubramaniam, Density-Functional Tight-Binding Simulations of Curvature-Controlled Layer Decoupling and Band-Gap Tuning in Bilayer MoS2, Physical Review Letters 112, 186802 (2014)
Related Links Academy of Finland Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |