Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
A new way to image surfaces on the nanoscale
by Staff Writers
Chicago IL (SPX) Jun 22, 2015


File image.

A multi-institutional team of scientists has taken an important step in understanding where atoms are located on the surfaces of rough materials, information that could be very useful in diverse commercial applications, such as developing green energy and understanding how materials rust.

Researchers from Northwestern University, Brookhaven National Laboratory, Lawrence Berkeley National Laboratory and the University of Melbourne, Australia, have developed a new imaging technique that uses atomic resolution secondary electron images in a quantitative way to determine the arrangement of atoms on the surface.

Many important processes take place at surfaces, ranging from the catalysis used to generate energy-dense fuels from sunlight and carbon dioxide to how bridges and airplanes corrode, or rust. Every material interacts with the world through its surface, which is often different in both structure and chemistry from the bulk of the material.

"We are excited by the possibilities of applying our imaging technique to corrosion and catalysis problems," said Laurence Marks, a co-author of the paper and a professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science. "The cost of corrosion to industry and the military is enormous, and we do not understand everything that is taking place. We must learn more, so we can produce materials that will last longer."

To understand these processes and improve material performance, it is vital to know how the atoms are arranged on surfaces. While there are many good methods for obtaining this information for rather flat surfaces, most currently available tools are limited in what they can reveal when the surfaces are rough.

Scanning electron microscopes are widely used to produce images of many different materials, and roughness of the surface is not that important. Until very recently, instruments could not obtain clear atomic images of surfaces until a group at Brookhaven managed in 2011 to get the first images that seemed to show the surfaces very clearly. However, it was not clear to what extent they really were able to image the surface, as there was no theory for the imaging and many uncertainties.

The new work has answered all these questions, Marks said, providing a definitive way of understanding the surfaces in detail. What was needed was to use a carefully controlled sample of strontium titanate and perform a large range of different types of imaging to unravel the precise details of how secondary electron images are produced.

"We started this work by investigating a well-studied material," said Jim Ciston, a staff scientist at Lawrence Berkeley National Laboratory and the lead author of the paper, who obtained the experimental images. "This new technique is so powerful that we had to revise much of what was already thought to be well-known. This is an exciting prospect because the surface of every material can act as its own nanomaterial coating, which can greatly change the chemistry and behavior."

"The beauty of the technique is that we can image surface atoms and bulk atoms simultaneously," said Yimei Zhu, a scientist at Brookhaven National Laboratory. "Currently, no existing methods can achieve that."

Les Allen, who led the theoretical and modeling aspects of the new imaging technique in Melbourne, said, "We now have a sophisticated understanding of what the images mean. It now will be full steam ahead to apply them to many different types of problems."

The study is published (June 17) by the journal Nature Communications. The paper is titled "Surface Determination Through Atomically Resolved Secondary Electron Imaging." In addition to Marks, Ciston, Zhu and Allen, other authors are Pratik Koirala and Yuyuan Lin from Northwestern, Hamish Brown and Adrian D'Alfonso from the University of Melbourne, Yuya Suzuki and Hiromi Inada from Hitachi, and Colin Ophus from Lawrence Berkeley National Laboratory.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Unlocking nanofibers' potential
Boston MA (SPX) Jun 15, 2015
Nanofibers - polymer filaments only a couple of hundred nanometers in diameter - have a huge range of potential applications, from solar cells to water filtration to fuel cells. But so far, their high cost of manufacture has relegated them to just a few niche industries. In the latest issue of the journal Nanotechnology, MIT researchers describe a new technique for producing nanofibers tha ... read more


NANO TECH
Green love-in at Paris Air Show but weaker sales

Jacobs Engineering continues work on Australian F-35 bases

France says India to seal deal on Rafale jets in '2 to 3 months'

UTC to rid itself of Sikorsky Aircraft

NANO TECH
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

NANO TECH
More data hacks could emerge from probe: US officials

Privacy groups quit US talks on facial recognition tech

Companies are making cybersecurity a greater priority

US data breach is intelligence coup for China

NANO TECH
ADB: Asia needs more green investments

US economist pens energy plan for Spain protest party

US climate skeptics say Pope wrong, poor need cheap fuel

Engineers develop plan to convert US to 100 percent renewable energy

NANO TECH
Graphene gets bright with ultra thin lightbulb

Binghamton engineer creates origami battery

Argonne advances engine simulation for greater efficiency

NIST's 'nano-raspberries' could bear fruit in fuel cells

NANO TECH
Northrop Grumman touts its next-generation targeting pod

Thales producing equipment for Canadian vehicles

ONR-sponsored technology to lighten marines' loads

VSE wins places on Army TACOM contracts

NANO TECH
Unlocking nanofibers' potential

Scientists observe photographic exposure live at the nanoscale

Measuring the mass of molecules on the nano-scale

Novel X-ray lens sharpens view into the nano world

NANO TECH
Japan's humanoid robot 'Pepper' set to hit stores

RoboSimian Drives, Walks and Drills in Robotics Finals

Robot eyes will benefit from insect vision

Helping robots handle uncertainty




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.