|
. | . |
|
by Staff Writers Houston TX (SPX) Apr 09, 2015
Water is the key component in a Rice University process to reliably create patterns of metallic and semiconducting wires less than 10 nanometers wide. The technique by the Rice lab of chemist James Tour builds upon its discovery that the meniscus - the curvy surface of water at its edge - can be an effective mask to make nanowires. The Rice team of Tour and graduate students Vera Abramova and Alexander Slesarev have now made nanowires between 6 and 16 nanometers wide from silicon, silicon dioxide, gold, chromium, tungsten, titanium, titanium dioxide and aluminum. They have also made crossbar structures of conducting nanowires from one or more of the materials. A paper on their technique, called meniscus-mask lithography, has been published online by the American Chemical Society journal Nano Letters. The process is promising for the semiconductor industry as it seeks to make circuits ever smaller. State-of-the-art integrated circuit fabrication allows for signal wires that approach 10 nanometers, visible only with powerful microscopes. These are the paths that connect the billions of transistors in modern electronic devices. "This could have huge ramifications for chip production since the wires are easily made to sub-10-nanometer sizes," Tour said of the Rice process. "There's no other way in the world to do this en masse on a surface." Current approaches to making such tiny wires take several paths. Lithography, the standard method for etching integrated circuits, is approaching the physical limits of its ability to shrink them further. Bulk synthesis of semiconducting and metallic nanowires is also possible, but the wires are difficult to position in integrated circuits. Water's tendency to adhere to surfaces went from an annoyance to an advantage when the Rice researchers found they could use it as a mask to make patterns. The water molecules gather wherever a raised pattern joins the target material and forms a curved meniscus created by the surface tension of water. The meniscus-mask process involves adding and then removing materials in a sequence that ultimately leaves a meniscus covering the wire and climbing the sidewall of a sacrificial metal mask that, when etched away, leaves the nanowire standing alone. Tour said the process should work with modern fabrication technology with no modifications to existing equipment and minimal changes in fabrication protocols. No new tools or materials are needed. Read the abstract here.
Related Links Rice University Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |