UNM physicist discovers strange forces acting on nanoparticles by Staff Writers Albuquerque NM (SPX) Apr 12, 2017
A new scientific paper published, in part, by a University of New Mexico physicist is shedding light on a strange force impacting particles at the smallest level of the material world. The discovery, published in Physical Review Letters, was made by an international team of researchers lead by UNM Assistant Professor Alejandro Manjavacas in the Department of Physics and Astronomy. Collaborators on the project include Francisco Rodriguez-Fortuno (King's College London, U.K.), F. Javier Garcia de Abajo (The Institute of Photonic Sciences, Spain) and Anatoly Zayats (King's College London, U.K.). The findings relate to an area of theoretical nanophotonics and quantum theory known as the Casimir Effect, a measurable force that exists between objects inside a vacuum caused by the fluctuations of electromagnetic waves. When studied using classical physics, the vacuum would not produce any force on the objects. However, when looked at using quantum field theory, the vacuum is filled with photons, creating a small but potentially significant force on the objects. "These studies are important because we are developing nanotechnologies where we're getting into distances and sizes that are so small that these types of forces can dominate everything else," said Manjavacas. "We know these Casimir forces exist, so, what we're trying to do is figure out the overall impact they have very small particles." Manjavacas' research expands on the Casimir effect by developing an analytical expression for the lateral Casimir force experienced by nanoparticles rotating near a flat surface. Imagine a tiny sphere (nanoparticle) rotating over a surface. While the sphere slows down due to photons colliding with it, that rotation also causes the sphere to move in a lateral direction. In our physical world, friction between the sphere and the surface would be needed to achieve lateral movement. However, the nano-world does not follow the same set of rules, eliminating the need for contact between the sphere and the surface for movement to occur. "The nanoparticle experiences a lateral force as if it were in contact with the surface, even though is actually separated from it," said Manjavacas. "It's a strange reaction but one that may prove to have significant impact for engineers." While the discovery may seem somewhat obscure, it is also extremely useful for researchers working in the always evolving nanotechnology industry. As part of their work, Manjavacas says they've also learned the direction of the force can be controlled by changing the distance between the particle and surface, an understanding that may help nanotech engineers develop better nanoscale objects for healthcare, computing or a variety of other areas. For Manjavacas, the project and this latest publication are just another step forward in his research into these Casimir forces, which he has been studying throughout his scientific career. After receiving his Ph.D. from Complutense University of Madrid (UCM) in 2013, Manjavacas worked as a postdoctoral research fellow at Rice University before coming to UNM in 2015. Currently, Manjavacas heads UNM's Theoretical Nanophotonics research group, collaborating with scientists around the world and locally in New Mexico. In fact, Manjavacas credits Los Alamos National Laboratory Researcher Diego Dalvit, a leading expert on Casimir forces, for helping much of his work progress. "If I had to name the person who knows the most about Casimir forces, I'd say it was him," said Manjavacas. "He published a book that's considered one of the big references on the topic. So, having him nearby and being able to collaborate with other UNM faculty is a big advantage for our research."
Washington DC (SPX) Apr 06, 2017 Those who have mixed oil and vinegar may have unknowingly observed a strange fluid phenomenon called fingering instability. A type of this phenomenon, called viscous fingering (VF), occurs in porous media where fluids of differing viscosity converge in finger-shaped patterns as a result of growing disturbances at the interface. Such instabilities are encountered in a wide variety of fields ... read more Related Links University of New Mexico Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |