Nano Technology News  
NANO TECH
The holy grail of nanowire production
by Staff Writers
Lausanne, Switzerland (SPX) Feb 25, 2019

EPFL researchers have found a way to control and standardize the production of nanowires on silicon surfaces. This discovery could make it possible to grow nanowires on electronic platforms, with potential applications including the integration of nanolasers into electronic chips and improved energy conversion in solar panels.

Nanowires have the potential to revolutionize the technology around us. Measuring just 5-100 nanometers in diameter (a nanometer is a millionth of a millimeter), these tiny, needle-shaped crystalline structures can alter how electricity or light passes through them.

They can emit, concentrate and absorb light and could therefore be used to add optical functionalities to electronic chips. They could, for example, make it possible to generate lasers directly on silicon chips and to integrate single-photon emitters for coding purposes. They could even be applied in solar panels to improve how sunlight is converted into electrical energy.

Up until now, it was impossible to reproduce the process of growing nanowires on silicon semiconductors - there was no way to repeatedly produce homogeneous nanowires in specific positions.

But researchers from EPFL's Laboratory of Semiconductor Materials, run by Anna Fontcuberta i Morral, together with colleagues from MIT and the IOFFE Institute, have come up with a way of growing nanowire networks in a highly controlled and fully reproducible manner.

The key was to understand what happens at the onset of nanowire growth, which goes against currently accepted theories. Their work has been published in Nature Communications.

"We think that this discovery will make it possible to realistically integrate a series of nanowires on silicon substrates," says Fontcuberta i Morral. "Up to now, these nanowires had to be grown individually, and the process couldn't be reproduced."

Getting the right ratio
The standard process for producing nanowires is to make tiny holes in silicon monoxide and fill them with a nanodrop of liquid gallium. This substance then solidifies when it comes into contact with arsenic.

But with this process, the substance tends to harden at the corners of the nanoholes, which means that the angle at which the nanowires will grow can't be predicted. The search was on for a way to produce homogeneous nanowires and control their position.

Research aimed at controlling the production process has tended to focus on the diameter of the hole, but this approach has not paid off. Now EPFL researchers have shown that by altering the diameter-to-height ratio of the hole, they can perfectly control how the nanowires grow. At the right ratio, the substance will solidify in a ring around the edge of the hole, which prevents the nanowires from growing at a non-perpendicular angle. And the researchers' process should work for all types of nanowires.

"It's kind of like growing a plant. They need water and sunlight, but you have to get the quantities right," says Fontcuberta i Morral.

This new production technique will be a boon for nanowire research, and further samples should soon be developed.

Research paper: "Fundamental aspects to localize self-catalyzed III-V nanowires on silicon"


Related Links
Ecole Polytechnique Federale de Lausanne
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Breakthrough nanoscience discovery made on flight from New York to Jerusalem
Jerusalem (SPX) Feb 20, 2019
Professor Uri Banin, founder of the Hebrew University of Jerusalem's Center for Nanoscience and Nanotechnology, and his colleagues Professor Richard Robinson and Professor Tobias Hanrath at Cornell University have made a breakthrough nanoscience discovery. In their recent paper, "Chemically Reversible Isomerization of Inorganic Clusters" published in Science, the authors reveal that a "magic-size nanocluster" is span class="NL"> a href="http://new.huji.ac.il/en" class="highlight">The Hebrew University ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Israel's first Moon mission blasts off from Florida

Ingredients for water could be made on surface of moon, a chemical factory

NASA is aboard first private moon landing attempt

NASA selects experiments for possible lunar flights in 2019

NANO TECH
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

NANO TECH
Huawei takes fight with US over spying fears to top mobile fair

Huawei's founder denies presence of 'backdoors' for spying

New Zealand holding talks on Huawei security fears: PM

British intelligence says Huawei risk manageable: FT

NANO TECH
Israel's first Moon mission blasts off from Florida

Ingredients for water could be made on surface of moon, a chemical factory

NASA is aboard first private moon landing attempt

NASA selects experiments for possible lunar flights in 2019

NANO TECH
Nanoparticle computing takes a giant step forward

Breakthrough nanoscience discovery made on flight from New York to Jerusalem

Customized mix of materials for three-dimensional micro- and nanostructures

Nano drops a million times smaller than a teardrop explodes 19th century theory

NANO TECH
Earth's atmosphere stretches out to the Moon - and beyond

KBRwyle Awarded $19M to Perform Flight Ops for USGS Satellite

exactEarth's real-time maritime tracking system now fully-deployed

Astronaut photography benefiting the planet

NANO TECH
Nanoparticle computing takes a giant step forward

Breakthrough nanoscience discovery made on flight from New York to Jerusalem

Customized mix of materials for three-dimensional micro- and nanostructures

Nano drops a million times smaller than a teardrop explodes 19th century theory

NANO TECH
Aquatic microorganism could inspire soft robots able to move fast in narrow spaces

Can we trust scientific discoveries made using machine learning?

Robots track moving objects with unprecedented precision

Teaching AI systems to adapt to dynamic environments









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.