Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Targeting tumors using silver nanoparticles
by Staff Writers
Santa Barbara CA (SPX) Jun 10, 2014


Prostate cancer cells were targeted by two separate silver nanoparticles (red and green), while the cell nucleus was labeled in blueusing Hoescht dye. Image courtesy UCSB.

Scientists at UC Santa Barbara have designed a nanoparticle that has a couple of unique - and important - properties. Spherical in shape and silver in composition, it is encased in a shell coated with a peptide that enables it to target tumor cells. What's more, the shell is etchable so those nanoparticles that don't hit their target can be broken down and eliminated. The research findings appear in the journal Nature Materials.

The core of the nanoparticle employs a phenomenon called plasmonics. In plasmonics, nanostructured metals such as gold and silver resonate in light and concentrate the electromagnetic field near the surface.

In this way, fluorescent dyes are enhanced, appearing about tenfold brighter than their natural state when no metal is present. When the core is etched, the enhancement goes away and the particle becomes dim.

UCSB's Ruoslahti Research Laboratory also developed a simple etching technique using biocompatible chemicals to rapidly disassemble and remove the silver nanoparticles outside living cells. This method leaves only the intact nanoparticles for imaging or quantification, thus revealing which cells have been targeted and how much each cell internalized.

"The disassembly is an interesting concept for creating drugs that respond to a certain stimulus," said Gary Braun, a postdoctoral associate in the Ruoslahti Lab in the Department of Molecular, Cellular and Developmental Biology (MCDB) and at Sanford-Burnham Medical Research Institute.

"It also minimizes the off-target toxicity by breaking down the excess nanoparticles so they can then be cleared through the kidneys."

This method for removing nanoparticles unable to penetrate target cells is unique. "By focusing on the nanoparticles that actually got into cells," Braun said, "we can then understand which cells were targeted and study the tissue transport pathways in more detail."

Some drugs are able to pass through the cell membrane on their own, but many drugs, especially RNA and DNA genetic drugs, are charged molecules that are blocked by the membrane. These drugs must be taken in through endocytosis, the process by which cells absorb molecules by engulfing them.

"This typically requires a nanoparticle carrier to protect the drug and carry it into the cell," Braun said. "And that's what we measured: the internalization of a carrier via endocytosis."

Because the nanoparticle has a core shell structure, the researchers can vary its exterior coating and compare the efficiency of tumor targeting and internalization. Switching out the surface agent enables the targeting of different diseases - or organisms in the case of bacteria - through the use of different target receptors. According to Braun, this should turn into a way to optimize drug delivery where the core is a drug-containing vehicle.

"These new nanoparticles have some remarkable properties that have already proven useful as a tool in our work that relates to targeted drug delivery into tumors," said Erkki Ruoslahti, adjunct distinguished professor in UCSB's Center for Nanomedicine and MCDB department and at Sanford-Burnham Medical Research Institute.

"They also have potential applications in combating infections. Dangerous infections caused by bacteria that are resistant to all antibiotics are getting more common, and new approaches to deal with this problem are desperately needed. Silver is a locally used antibacterial agent and our targeting technology may make it possible to use silver nanoparticles in treating infections anywhere in the body."

.


Related Links
University of California - Santa Barbara
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Unexpected water explains surface chemistry of nanocrystals
Berkeley CA (SPX) Jun 01, 2014
Danylo Zherebetskyy and his colleagues at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide (PbS) nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how th ... read more


NANO TECH
From Close Air Support to Fire Suppression

International research and technology center opened by Boeing

Australia probes possible MH370 witness account

Chinese ship in latest glitch in MH370 search mission

NANO TECH
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

NANO TECH
Last original Navajo Code Talker dies

Lockheed Martin wins NSA cyber-response accreditation

Google steps up bid to stymie email snooping

International raid targets data-stealing computer virus: US

NANO TECH
Ukraine: The Real Energy Crisis Starts in June

Carbon plan still leaves US short of UN pledge: study

Carbon: China hopes peak will come 'as early as possible'

Wyoming site could store 300 years worth of carbon emissions

NANO TECH
Physicist builds useful light source from harmonic generation

Breakthrough in energy storage: Electrical cables that can store energy

X-ray pulses on demand from electron storage rings

In climate change fight, Obama gets tough on coal

NANO TECH
U.S. Military orders ammunition from ATK Defense Group

New Pentagon contracts for OMNITEC Solutions Inc

SAIC selected for joint force development services

Compact Indium Phosphide Ultra-Low-Noise Amplifiers For Military Use

NANO TECH
Unexpected water explains surface chemistry of nanocrystals

DNA nanotechnology places enzyme catalysis within an arm's length

Engineers build world's smallest, fastest nanomotor

Bending helps to control nanomaterials

NANO TECH
Japan's SoftBank unveils 'family member' robot

Combat robots to become Russian army new recruits

Velociraptor robot almost as fast as robotic rival Cheetah

New printable robots could self-assemble when heated




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.