Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Special UO microscope captures defects in nanotubes
by Staff Writers
Eugene OR (SPX) Oct 23, 2014


George Nazin, a professor of physical chemistry at the University of Oregon, has uncovered traps, or defects, that disrupt electronic waves in nanotubes. The work was done with a scanning tunneling microscope fitted with a closed-cycle cryostat. Image courtesy University of Oregon.

University of Oregon chemists have devised a way to see the internal structures of electronic waves trapped in carbon nanotubes by external electrostatic charges.

Carbon nanotubes have been touted as exceptional materials with unique properties that allow for extremely efficient charge and energy transport, with the potential to open the way for new, more efficient types of electronic and photovoltaic devices.

However, these traps, or defects, in ultra-thin nanotubes can compromise their effectiveness.

Using a specially built microscope capable of imaging matter at the atomic scale, the researchers were able to visualize traps, which can adversely affect the flow of electrons and elementary energy packets called excitons.

The study, said George V. Nazin, a professor of physical chemistry, modeled the behavior often observed in carbon nanotube-based electronic devices, where electronic traps are induced by stochastic external charges in the immediate vicinity of the nanotubes. The external charges attract and trap electrons propagating through nanotubes.

"Our visualization should be useful for the development of a more accurate picture of electron propagation through nanotubes in real-world applications, where nanotubes are always subjected to external perturbations that potentially may lead to the creation of these traps," he said.

The research, detailed in a paper in the Journal of Physical Chemistry Letters, was done with an ultra-high vacuum scanning tunneling microscope coupled to a closed-cycle cryostat -- a novel device built for use in Nazin's lab. The cryostat allowed Nazin and his co-authors Dmitry A. Kislitsyn and Jason D. Hackley, both doctoral students, to lower the temperature to 20 Kelvin to freeze all nanoscale motion, and visualize the internal structures of nanoscale objects.

The device captured the internal structure of electronic waves trapped in short sections, just several nanometers long, of nanotubes partially suspended above an atomically flat gold surface.

The properties of the waves, to a large extent, Nazin said, determine electron transmission through such electronic traps. The propagating electrons have to be in resonance with the localized waves for efficient electronic transmission to occur.

"Amazingly, by finely tuning the energies of propagating electrons, we found that, in addition to these resonance transmission channels, other resonances also are possible, with energies matching those of specific vibrations in carbon nanotubes," he said. "These new transmission channels correspond to 'vibronic' resonances, where trapped electronic waves excite vibrations of carbon atoms forming the electronic trap."

The microscope the team used is detailed separately in a freely available paper (High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat) placed online Oct. 7 by the journal Review of Scientific Instruments.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oregon
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Electric charge along microbial nanowires imaged
Amherst MA (SPX) Oct 21, 2014
The claim by microbiologist Derek Lovley and colleagues at the University of Massachusetts Amherst that the microbe Geobacter produces tiny electrical wires, called microbial nanowires, has been mired in controversy for a decade, but the researchers say a new collaborative study provides stronger evidence than ever to support their claims. UMass Amherst physicists working with Lovley and c ... read more


NANO TECH
Charles River Analytics awarded NASA contract to improve aviation safety

Brazil inks deal for Gripen aircraft

US agrees deal to buy 43 more F-35 fighters: Pentagon

Brazil, Argentina to negotiate over Gripen aircraft

NANO TECH
China's lunar orbiter modifies orbit

China's Main Competitor in Space Exploration is India, Not Russia

China launches first mission to moon and back

China to send orbiter to moon and back: report

NANO TECH
US eyes cyber 'deterrence' to stop hackers

Cyber-security center launched in Wales

Samsung devices get top US security clearance

FBI renews call for wider wiretap powers

NANO TECH
Durable foul-release coatings control invasive mussel attachment

CO2 emissions up in U.S. because of polar vortex

New policymaking tool for shift to renewable energy

Climate: EU set for 24% emissions cut by 2020

NANO TECH
Super stable garnet ceramics ideal for high-energy lithium batteries

Aquion Energy Unveils Next Generation of AHI Battery Technology

AREVA develops a smart network for industrial site management

Chinese power companies pursue smart grids

NANO TECH
Lockheed Martin making turrets for Scout SV armored vehicles

Britain taps Raytheon, Thales for IFF upgrade study

RAZAR zoom scope developed for military assault rifles

Army, Navy getting tougher combat helmets

NANO TECH
Special UO microscope captures defects in nanotubes

Electric charge along microbial nanowires imaged

Nanoparticles get a magnetic handle

Solid nanoparticles can deform like a liquid

NANO TECH
Google teams with Oxford to teach machines to think

Japan toymaker unveils tiny talking, singing humanoid

New TALON tactical robot makes debut

An android opera: Japan's Shibuya plots new era of robot music




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.