. Nano Technology News .




.
NANO TECH
Solved: The Mystery of the Nanoscale Crop Circles
by Paul Preuss for Berkeley News
Berkeley CA (SPX) Mar 06, 2012

When a thin layer of gold anneals on top of a silicon wafer coated with native silicon oxide, randomly distributed pools of eutectic alloy quickly form - and then go through a rapid series of strange changes, leaving behind bare silicon-dioxide circles surrounded by debris. Each denuded circle reveals a perfect square at its center. The area shown is about 107 by 155 micrometers (millionths of a meter).

Almost three years ago a team of scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) was performing an experiment in which layers of gold mere nanometers (billionths of a meter) thick were being heated on a flat silicon surface and then allowed to cool. They watched in surprise as peculiar features expanded and changed on the screen of their electron microscope, finally settling into circles surrounded by irregular blisters.

The circles varied in diameter up to a few millionths of a meter, and in the center of each was a perfect square. The mysterious patterns were reminiscent of nothing so much as so-called "alien" crop circles.

Until recently the cause of these strange formations remained a mystery. Now theoretical insights have explained what's happening, and the results have been published online by Physical Review Letters.

Eagerly melting alloys
When two solids are combined in just the right proportions, changes in chemical bonding may produce an alloy that melts at a temperature far lower than either can melt by itself. Such an alloy is called eutectic, Greek for "good melting."

The eutectic alloy of gold and silicon - 81 percent gold and 19 percent silicon - is especially useful in processing nanoscale semiconductors such as nanowires, as well as for device interconnections in integrated circuits; it liquefies at a modest 363 degrees Celsius, far lower than the melting point of either pure gold, 1064 degrees C, or pure silicon, 1414 degrees

"Gold-silicon eutectic liquid can safely solder chip layers together or form microscopic conducting wires, by flowing into channels in the substrate without burning up the surroundings," says Berkeley Lab's Junqiao Wu. "It's particularly interesting for processing nanoscale materials and devices." Wu cites the example of silicon nanowires, which can be grown from beads of eutectic liquid that form from droplets of gold. The beads catalyze the deposition of silicon from a chemical vapor and ride atop continually lengthening nanowire whiskers.

Understanding just how and why this happens has been a challenge. Although eutectic alloys are well studied as solids, the liquid state presents more obstacles, which are particularly formidable at the nanoscale because of greatly increased surface tension - the same surface forces that make it difficult to form ultra-thin films of water, for example, because they pull the water into droplets. At smaller scales the ratio of surface area to bulk increases markedly, and nanoscale structures have been described as virtually "all surface."

These are the conditions that the team led by Wu, who is a faculty scientist in Berkeley Lab's Materials Sciences Division and a professor in the Department of Materials Science and Engineering at the University of California at Berkeley, set out to examine, by creating the thinnest possible films of gold-silicon eutectic alloys.

The researchers did so by starting with a substrate of pure silicon, on whose flat surface an extremely thin barrier layer (two nanometers thick) of silicon dioxide had formed. On this surface they laid layers of pure gold, varying the thickness from one trial to the next between just a few nanometers to a hefty 300 nanometers. The silicon dioxide barrier prevented the pure silicon from mixing with the gold.

The next step was to heat the layered sample to 600 degrees C for several minutes - not hot enough to melt the gold or silicon but hot enough to cause naturally existing pinholes in the thin silicon dioxide layer to enlarge into small weak spots, through which pure silicon could come in contact with the overlying gold.

At the high temperature, silicon atoms quickly diffused out of the substrate and into the gold, forming a layer of eutectic gold-silicon alloy nearly the same thickness as the original gold and spreading in a virtually perfect circle from the central pinhole.

When the circular disk of eutectic alloy got large enough it suddenly broke up, disrupted by the high surface energy of the gold-silicon eutectic liquid. The debris was literally pulled to the edges of the disk, piling up around it to leave a central denuded zone of bare silicon dioxide.

In the center of the denuded zone, a perfect square of gold and silicon remained.

Chemistry and crystallography, not aliens
The researchers' most surprising discovery was that the thinner the original gold layer, the faster the eutectic circles expanded. The reaction rate when the gold layers were only 20 nanometers thick was more than 20 times faster than when the layers were 300 nanometers thick.

And while at first glance the dimensions of the gold and silicon squares inside the circular denuded zones seemed variable, there was in fact a strict relation between the size of the square and the size of the circle: the radius of the circle was always the length of the square raised to the power of 3/2.

How did the squares get there in the first place? They originated as weak spots that were the sources of the spreading eutectic gold-silicon circles; when the circular eutectic was ruptured the squares filled with the same eutectic, which remained at the centers of the denuded zones. As they cooled, the gold and silicon within the squares separated, leaving sharply defined edges that were pure silicon; the centers were more roughly outlined squares of pure gold.

By slicing through the silicon/silicon dioxide/gold layercake and looking sideways at the structures with an electron microscope, the researchers found that the surface squares were the bases of inverted pyramids, resembling teeth penetrating the thin silicon dioxide layer and embedded in the silicon wafer.

The squares were square, in fact, because of the silicon's orientation: the substrate had been cut along the crystal plane that defined the base. The four triangular sides of the pyramids lay along the low-energy planes of the crystal lattice and were defined by their intersections.

What began as a puzzling phenomenon reminiscent of "The X Files," if on a considerably smaller scale than the cosmic, the mystery of the "nanoscale crop circles" eventually yielded to careful observation and theoretical analysis - despite the obstacles posed by high temperatures, nanoscale sizes, instabilities of the liquid state, and extremely rapid time scales.

"We found that the reaction rate in forming small-sized gold-silicon eutectic liquids - and perhaps in many other eutectics as well - is dominated by the thickness of the reacting layers," says Wu. "This discovery may provide new routes for the engineering and processing of nanoscale materials."

Videos showing the growth of "nanoscale crop circles" as seen with an electron microscope are posted on YouTube. A wide-field overview is here. High-resolution details are here. A mashup reflecting the researchers' first reaction to their discovery (with a nod to "The X Files") is here. "Large reaction rate enhancement in formation of ultra-thin AuSi eutectic layers," by Tyler S. Matthews, Carolyn Sawyer, D. Frank Ogletree, Zuzanna Liliental-Weber, D. C. Chrzan, and Junqiao Wu, appears in Physical Review Letters and is available online to subscribers here.

Related Links
Berkeley Lab
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
New measuring techniques can improve efficiency, safety of nanoparticles
Boston MA (SPX) Mar 02, 2012
Using high-precision microscopy and X-ray scattering techniques, University of Oregon researchers have gained eye-opening insights into the process of applying green chemistry to nanotechnology that results in high yields, improves efficiency and dramatically reduces waste and potential negative exposure to human health or the environment. University of Oregon chemist James E. Hutchison de ... read more


NANO TECH
Hong Kong Airlines may cancel A380 order: report

ISRO bets on satellite navigation for aviation services

Boeing to sell ten 777s to China Southern

Aircraft of the future could capture and re-use some of their own

NANO TECH
China hopes to send Long March-5 rocket into space in 2014

Upgraded carrier rocket ready for China's first manned space docking

Long March 7 carrier rocket to lift off in five years

Logistics, recycling key to China's space station

NANO TECH
Hacker ring busted after leader turns FBI informant

FBI chief seeks allies to fight cyber crime

Stuxnet was 'good idea': former CIA chief

Lockheed Martin and NRTC to Offer Information Technology and Cyber Security Solutions to Rural Utilities

NANO TECH
$137B needed for Europe grid upgrades

Panel backs carbon allowance 'set-asides'

EU urges quicker energy market reforms

Call for tough new targets on European Union energy reduction

NANO TECH
South Korea clinches Emirates oil deal

Oil prices mixed as Iran risks weigh

Gasoline worse than diesel when it comes to some types of air pollution

UK scientists develop optimum piezoelectric energy harvesters

NANO TECH
Soldiers recover bodies from Congo blast site

Raytheon Demonstrates Enhanced Capabilities for TOW

Northrop Grumman to Upgrade Software for the LN-251 Navigation System on the CH-53K Helicopter

Finding explosives with laser beams

NANO TECH
Solved: The Mystery of the Nanoscale Crop Circles

New measuring techniques can improve efficiency, safety of nanoparticles

Nanofiber Breakthrough Holds Promise for Medicine and Microprocessors

Novel method to make nanomaterials discovered

NANO TECH
What Makes a Robot Fish Attractive?

Pole-dancing robots wow world's biggest high-tech fair

Flying robots swoop and swarm as a team

Humanoid Robot Exhibition Opens Drexel Engineers Week


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement