. Nano Technology News .




NANO TECH
Size Matters as Nanocrystals Go Through Phases
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Sep 10, 2013


Palladium nanocubes interacting with hydrogen gas were directly observed through in situ luminescence to reveal that size can make a much bigger difference on phase transformations than scientists previously believed.

Understanding what happens to a material as it undergoes phase transformations - changes from a solid to a liquid to a gas or a plasma - is of fundamental scientific interest and critical for optimizing commercial applications. For metal nanocrystals, assumptions about the size-dependence of phase transformations were made that now need to be re-evaluated.

A team of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has demonstrated that as metal nanocrystals go through phase transformations, size can make a much bigger difference than previously believed.

Working at Berkeley Lab's Molecular Foundry, a DOE Nanoscale Science Research Center, the team led by Jeffrey Urban and Stephen Whitelam developed a unique optical probe based on luminescence that provided the first direct observations of metal nanocrystals undergoing phase transformations during reactions with hydrogen gas.

Analysis of their observations revealed a surprising degree of size-dependence when it comes to such critical properties as thermodynamics and kinetics. These results hold important implications for the future design of hydrogen storage systems, catalysts, fuel cells and batteries.

"No one has ever directly observed phase transformations in metal nanocrystal systems before so no one saw the size dependence factor, which was obscured by other complicating effects, hidden in plain sight if you will," Urban says.

"The assumption had been that for nanocrystals beyond 15 nanometers, the thermodynamic and kinetic behavior would be essentially bulk-like. However, our results show that pure size effects can be understood and productively employed over a much broader range of nanocrystal sizes than previously thought."

Urban and Whitelam, both of whom hold appointments with Berkeley Lab's Materials Sciences Division, are the corresponding authors of a paper describing this study in the journal Nature Materials. The paper is titled "Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals." Co-authors are Rizia Bardhan, Lester Hedges, Cary Pint and Ali Javey.

While it is well established that materials on the nanoscale can offer physical, chemical and mechanical properties not displayed at the microscale, knowledge as to how these properties can be altered as nanocrystals undergo phase transformations has been lacking.

"Quantitative understanding of nanocrystal phase transformations has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments," Urban says.

Urban and his colleagues addressed this problem with a custom-built stainless steel gas-tight cell with optical windows and heating elements and connected to a high vacuum pump.

They used this experimental setup to collect in situ luminescence spectra with a confocal Raman microscope as palladium nanocubes interacted with hydrogen gas. The nanocubes were synthesized by wet-chemistry and were all clear-faceted single-crystalline objects with a narrow range in size distribution.

"Our experimental setup allowed for rapid, direct monitoring of minuscule alterations in luminescence during hydrogen sorption," Urban says.

"This allowed us to uncover the size-dependence of the intrinsic thermodynamics and kinetics of hydriding and dehydriding phase transformations. We observed a dramatic decrease in luminescence as the palladium nanocubes formed hydrides. This lost luminescence was regained during dehydriding."

A statistical mechanical model whose development was led by Whitelam and co-author Hedges was then used to quantify the observational data for palladium nanocubes of all sizes. Because of the narrow size distribution of the nanocubes, Whitelam, Urban and their colleagues were able to show a direct correlation between luminescence and phase transitions that can be applied to other metal nanocrystal systems as well.

"Simple geometric arguments tell us that under certain conditions, thermally driven solid-state phase transformations are governed by nanocrystal dimensions," Whitelam says. "These arguments further suggest ways of optimizing hydrogen storage kinetics in a variety of metal nanocrystal systems."

The next step in this research will be to examine the effects of dopants on phase transformations in metal nanosystems.

"Our luminescence-probe and statistical mechanical model are a versatile combination," Urban says, "that allow us to look at a number of gas-nanocrystal interactions in which controlling the thermodynamics of the interactions is paramount."

This research was supported by DOE's Office of Science through the Molecular Foundry and through the Center for Nanoscale Control of Geologic Carbon Dioxide, a DOE Energy Frontier Research Center. Additional support was provided by DOE's Office of Energy Efficiency and Renewable Energy and by Mohr Davidow Ventures, a venture capital firm.

.


Related Links
Berkeley Lab
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
New breakthrough for structural characterization of metal nanoparticles
Helsinki, Finland (SPX) Sep 09, 2013
Researchers at the Xiamen University in China and the University of Jyvaskyla in Finland have characterized a series of stable 1.5 nm metal nanoclusters containing 44 metal atoms, stabilized by 30 organic thiol molecules on the surface. Two types of clusters were synthesized, containing either 44 silver atoms or an intermetallic cluster of 12 gold and 32 silver atoms. The work in the ... read more


NANO TECH
BAE considers military refueling conversion for commercial jet

Air Canada transfers executive jet fleet to partner

Bell Boeing V-22 Osprey Deploys Refueling Equipment in Flight Test

Aerospace firms expand supply, services networks in Poland

NANO TECH
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

NANO TECH
Israel's secret intel unit spawns high-tech tycoons

New York Times website still down after hack attack

Yahoo reports 29,000 government data requests

US leaker stayed at Russia's Hong Kong consulate: report

NANO TECH
Time for Investors to Hunker Down

NREL Study Suggests Cost Gap for Western Renewables Could Narrow by 2025

Berlin Senate opposes municipalization of city power grid

Non-Hydro Renewables Triple Output in a Decade

NANO TECH
Philippines mulls removing 'Chinese' blocks at shoal

Shell opens compensation talks over massive Nigeria oil spill

Japan and India to push for better LNG pricing

Electronics advance moves closer to a world beyond silicon

NANO TECH
Warrior Web Closer to Making Its Performance-Improving Suit a Reality

Russia unveils plans for new anti-missile system, 5th-generation fighter jet

MEADS System to Identify Friend Or Foe Aircraft Certified by U.S. Air Traffic Control Office

Lockheed Martin's paveway II Dual Mode Laser Guided Bomb Successfully Employed in Navy Exercises

NANO TECH
Size Matters as Nanocrystals Go Through Phases

New breakthrough for structural characterization of metal nanoparticles

Toxic nanoparticles might be entering human food supply

Graphene nanoscrolls are formed by decoration of magnetic nanoparticles

NANO TECH
Japan's robo-astronaut takes 'one small step...'

Brain interface allows researcher to control another's hand movements

Computer scientists envision computer chip working like a human brain

Researchers create 'soft robotic' devices using water-based gels




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement