Shiny fish skin inspires nanoscale light reflectors by Staff Writers University Park PA (SPX) Jan 18, 2016
A nature-inspired method to model the reflection of light from the skin of silvery fish and other organisms may be possible, according to Penn State researchers. Such a technique may be applicable to developing better broadband reflectors and custom multi-spectral filters for a wide variety of applications, including advanced optical coatings for glass, laser protection, infrared imaging systems, optical communication systems and photovoltaics, according to Douglas Werner, John L. and Genevieve H. McCain Chair Professor in Electrical Engineering, Penn State. The proposed model also contributes to the understanding of the reflective layering in the skin of some organisms. The shiny skins of certain ribbonfish reflect light across a broad range of wavelengths, giving them a brilliant metallic appearance. The reflectivity is the result of stacked layers of crystalline organic compounds embedded in their skin's cytoplasm. Some organisms with metallic sheens have layers that are stacked in a regular pattern, while others, including the ribbonfish, have stacking patterns described as "chaotic" or random. The Penn State team determined that the stacking is not completely random and developed mathematical algorithms to replicate those patterns in semiconductor materials. "We are proposing a model that uses fractal geometry to describe the layering in the biological structure of silvery fish," says Jeremy Bossard, postdoctoral researcher in electrical engineering, Penn State. "While we are not trying to reproduce the structure found in nature, the same model could guide the design of devices such as broadband mirrors." Fractals have been called the "geometry of nature" because they can help describe the irregular but self-similar patterns that occur in natural objects such as branching tree limbs. The researchers use a one-dimensional fractal, known as a Cantor bar fractal, which is a line divided by spaces or gaps. Normally, Cantor fractals appear to be very regular, but when random changes are introduced to the geometry, a more complex pattern emerges. The pattern resembles the layering of reflective layers in ribbonfish skin. "There is an underlying pattern, but there is randomness built in," says Bossard, "similar to the way that living trees have an overall fractal pattern but do not grow symmetrically." The researchers then use another nature-inspired computational method called a genetic algorithm that mimics Darwinian evolution to create successive generations of fractal patterns from the parent patterns. Over approximately 100 generations, the patterns converge on the best design to meet all the target requirements. Using these fractal random Cantor bars and the genetic algorithm, the researchers were able to mathematically generate patterns targeting optical functions in the mid-infrared and near-infrared ranges, including broadband reflection. They propose that the design approach could be used to develop nanoscale stacks with customized reflective spectra. The research results are reported in the January 13, 2016 issue of the Journal of the Royal Society Interface in "Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm." Lan Lin, a recent Ph.D. graduate in electrical engineering, also contributed to the work and performed materials fabrication and characterization for the project.
Related Links Penn State Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |