|
. | . |
|
by Staff Writers Berlin, Germany (SPX) Aug 07, 2014
Researchers at HZB in co-operation with Humboldt-Universitat zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters. This was determined using Small-Angle X-ray Scattering (SAXS) at BESSY II. A thorough examination with an electron microscope (TEM) confirmed their result. "The research on this phenomenon is now proceeding because we are convinced that such nanoclusters lend themselves as catalysts, whether in fuel cells, in photocatalytic water splitting, or for other important reactions in chemical engineering", explains Dr. Armin Hoell of HZB. The results have just appeared in two peer reviewed international academic journals. "What is special about the new process is that it is extremely simple and works with an environmentally friendly and inexpensive solvent", explains Professor Klaus Rademann from HU Berlin. The solvent actually consists of two powders that one would sooner expect to find in agriculture that in a research laboratory: a supplement in chicken feed (choline chloride, aka vitamin B), and urea. British colleagues discovered a few years ago that mixing the two powders forms a transparent liquid able to dissolve metal oxides and heavy metals, called deep eutectic solvent (DES). The researchers in Berlin then positioned above the solvent gold foil that they could bombard with ions of noble gas in order to detach individual atoms of gold. This is how nanoparticles initially formed that distributed themselves in the solvent.
Two surprising results: Nanoparticles stay small and form clusters The second surprise: these nanoparticles did not distribute themselves uniformly in the liquid, but instead self-assembled into small groups or clusters that could consist of up to twelve nanoparticles. These kinds of observations cannot be easily made under a microscope, of course, but require instead an indirect, statistical approach: "Using small-angle X-ray scattering at BESSY II, we were not only able to ascertain that the nanoparticles are all around five nanometres in diameter, but also measure what the separations between them are. From these measurements, we found the nanoparticles arrange themselves into clusters", explains Hoell.
Coherent picture by simulations, small angle scattering and electron microscopy "But we could not have achieved this result using only electron microscopy, since it can only display details and sections of the specimen", Hoell emphasised. "Small-angle X-ray scattering is indispensable for measuring general trends and averages!"
Solvent is crucial "We know, however, that these kinds of small clusters of nanoparticles are especially effective as catalysts for chemical reactions we want: a many-fold increase in the reaction speed due only to particle arrangement has already been demonstrated", says Rademann.
Related Links Humboldt-Universitat zu Berlin (HU, Berlin) Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |