. Nano Technology News .




.
NANO TECH
Researchers Develop New, Less Expensive Nanolithography Technique
by Staff Writers
Raleigh NC (SPX) Sep 04, 2012

This technique uses no electronic components to bring the cantilevers into contact with the substrate surface.

Researchers from North Carolina State University have developed a new nanolithography technique that is less expensive than other approaches and can be used to create technologies with biomedical applications. "Among other things, this type of lithography can be used to manufacture chips for use in biological sensors that can identify target molecules, such as proteins or genetic material associated with specific medical conditions," says Dr. Albena Ivanisevic, co-author of a paper describing the research.

Ivanisevic is an associate professor of materials science and engineering at NC State and associate professor of the joint biomedical engineering program at NC State and the University of North Carolina at Chapel Hill. Nanolithography is a way of printing patterns at the nanoscale.

The new technique relies on cantilevers, which are 150-micron long silicon strips. The cantilevers can be tipped with spheres made of polymer or with naturally occurring spores. The spheres and spores are coated with ink and dried. The spheres and spores are absorbent and will soak up water when exposed to increased humidity.

As a result, when the cantilevers are exposed to humidity in a chamber, the spheres and spores absorb water - making the tips of the cantilevers heavier and dragging them down into contact with any chosen surface.

Users can manipulate the size of the spheres and spores, which allows them to control the patterns created by the cantilevers. For example, at low humidity, a large sphere will absorb more water than a small sphere, and will therefore be dragged down into contact with the substrate surface.

The small sphere won't be lowered into contact with the surface until it is exposed to higher humidity and absorbs more water.

Further, the differing characteristics of sphere polymers and spores mean that they absorb different amounts of water when exposed to the same humidity - giving users even more control of the nanolithography.

"This technique is less expensive than other device-driven lithography techniques used for microfabrication because the cantilevers do not rely on electronic components to bring the cantilevers into contact with the substrate surface," Ivanisevic says.

"Next steps for this work include using this approach to fabricate lithographic patterns onto tissue for use in tissue regeneration efforts."

The paper, "Parallel Dip-Pen Nanolithography using Spore- and Colloid-Terminated Cantilevers," was published online Aug. 17 in the journal Small. Lead author of the paper is Dr. Marcus A. Kramer, who did the work at NC State while completing his Ph.D. at Purdue University.

Related Links
North Carolina State University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Nano machine shop shapes nanowires, ultrathin films
West Lafayette IN (SPX) Aug 30, 2012
A new "nano machine shop" that shapes nanowires and ultrathin films could represent a future manufacturing method for tiny structures with potentially revolutionary properties. The structures might be tuned for applications ranging from high-speed electronics to solar cells and also may have greater strength and unusual traits such as ultrahigh magnetism and "plasmonic resonance," which could le ... read more


NANO TECH
'Sideways' aircraft for supersonic speed?

Arrest after China flight threat: state media

Airbus says Chinese-built planes to be sold only in China

Australia buys Growler systems for Hornets

NANO TECH
China's manned spacecraft in final preparations for mid-June launch

China eyes next lunar landing as US scales back

China unveils ambitious space projects

Is China Going to Blast Past America in Space?

NANO TECH
Taiwan to step up cyberwar capabilities: report

WikiLeaks soldier to face US trial on February 4

US withheld email evidence in WikiLeaks case: defense

US 'withheld' emails on WikiLeaks suspect: defense

NANO TECH
Australian shipping emissions identified

Australia abandons coal power plant closure plans

Russian Arctic resources

Zimbabwe utility halts disconnections

NANO TECH
Waste silicon gets new life in lithium-ion batteries at Rice University

Oil market steady amid weak Chinese data

Using magnetism to understand superconductivity

Nigerian community urges action on oil devastation

NANO TECH
Study Explores Injury Risk in Military Humvee Crashes

New era in camouflage makeup: Shielding soldiers from searing heat of bomb blasts

Uganda investigates helicopter crashes

Canada mulls new army mobile surveillance

NANO TECH
Researchers Develop New, Less Expensive Nanolithography Technique

Breakthrough in nanotechnology material science

Nano machine shop shapes nanowires, ultrathin films

New wave of technologies possible after ground-breaking analysis tool developed

NANO TECH
Soft robots, in color

NASA Historic Test Stands Make Way for New Reusable Robotic Lander Neig

Dextrous robotic hand gets thumbs up

The first robot that mimics the water striders' jumping abilities


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement