Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Realizing carbon nanotube integrated circuits
by Staff Writers
Chicago IL (SPX) Sep 09, 2015


File image.

Individual transistors made from carbon nanotubes are faster and more energy efficient than those made from other materials. Going from a single transistor to an integrated circuit full of transistors, however, is a giant leap.

"A single microprocessor has a billion transistors in it," said Northwestern Engineering's Mark Hersam. "All billion of them work. And not only do they work, but they work reliably for years or even decades."

When trying to make the leap from an individual, nanotube-based transistor to wafer-scale integrated circuits, many research teams, including Hersam's, have met challenges. For one, the process is incredibly expensive, often requiring billion-dollar cleanrooms to keep the delicate nano-sized components safe from the potentially damaging effects of air, water, and dust. Researchers have also struggled to create a carbon nanotube-based integrated circuit in which the transistors are spatially uniform across the material, which is needed for the overall system to work.

Now Hersam and his team at Northwestern University have found a key to solving all these issues. The secret lies in newly developed encapsulation layers that protect carbon nanotubes from environmental degradation.

Supported by the Office of Naval Research and the National Science Foundation, the research appears online in Nature Nanotechology on September 7. Tobin J. Marks, the Vladimir N. Ipatieff Research Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences and professor of materials science and engineering in the McCormick School of Engineering, coauthored the paper. Michael Geier, a graduate student in Hersam's lab, was first author.

"One of the realities of a nanomaterial, such as a carbon nanotube, is that essentially all of its atoms on the surface," said Hersam, the Walter P. Murphy Professor of Materials Science and Engineering. "So anything that touches the surface of these materials can influence their properties. If we made a series of transistors and left them out in the air, water and oxygen would stick to the surface of the nanotubes, degrading them over time. We thought that adding a protective encapsulation layer could arrest this degradation process to achieve substantially longer lifetimes."

Hersam compares his solution to one currently used for organic light-emitting diodes (LEDs), which experienced similar problems after they were first realized. Many people assumed that organic LEDs would have no future because they degraded in air. After researchers developed an encapsulation layer for the material, organic LEDs are now used in many commercial applications, including displays for smartphones, car radios, televisions, and digital cameras. Made from polymers and inorganic oxides, Hersam's encapsulation layer is based on the same idea but tailored for carbon nanotubes.

To demonstrate proof of concept, Hersam developed nanotube-based static random-access memory (SRAM) circuits. SRAM is a key component of all microprocessors, often making up as much as 85 percent of the transistors in the central-processing unit in a common computer. To create the encapsulated carbon nanotubes, the team first deposited the carbon nanotubes from a solution previously developed in Hersam's lab. Then they coated the tubes with their encapsulation layers.

Using the encapsulated carbon nanotubes, Hersam's team successfully designed and fabricated arrays of working SRAM circuits. Not only did the encapsulation layers protect the sensitive device from the environment, but they improved spatial uniformity among individual transistors across the wafer. While Hersam's integrated circuits demonstrated a long lifetime, transistors that were deposited from the same solution but not coated degraded within hours.

"After we've made the devices, we can leave them out in air with no further precautions," Hersam said. "We don't need to put them in a vacuum chamber or controlled environment. Other researchers have made similar devices but immediately had to put them in a vacuum chamber or inert environment to keep them stable. That's obviously not going to work in a real-world situation."

Hersam imagines that his solution-processed, air-stable SRAM could be used in emerging technologies. Flexible carbon nanotube-based transistors could replace rigid silicon to enable wearable electronics. The cheaper manufacturing method also opens doors for smart cards - credit cards embedded with personal information to reduce the likelihood of fraud.

"Smart cards are only realistic if they can be realized using extremely low-cost manufacturing," he said. "Because our solution-processed carbon nanotubes are compatible with scalable and inexpensive printing methods, our results could enable smart cards and related printed electronics applications."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Using DNA origami to build nanodevices of the future
Kyoto, Japan (SPX) Sep 03, 2015
Scientists have been studying ways to use synthetic DNA as a building block for smaller and faster devices. DNA has the advantage of being inherently "coded". Each DNA strand is formed of one of four "codes" that can link to only one complementary code each, thus binding two DNA strands together. Scientists are using this inherent coding to manipulate and "fold" DNA to form "origami nanost ... read more


NANO TECH
Robotic landing gear could enable helicopters to take off and land anywhere

China, Russia plan new heavy-lift helicopter

Eurofighter says Kuwait purchasing 28 warplanes

First European-built F-35 has maiden flight

NANO TECH
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

NANO TECH
AF Space Command Scholars program aims to develop space, cyber experts

US intelligence official warns of evolving cyber threats

Obama says cyber attacks from China 'not acceptable'

Microsoft, US clash in court on overseas email warrant

NANO TECH
New wearable technology can sense appliance use, help track carbon footprint

British study finds new potential for carbon storage

How to curb emissions? Put a price on carbon

Hong Kong's Li overhauls business by merging utilities firms

NANO TECH
Physicists catch a magnetic wave that offers promise for more energy-efficient computing

Hyperloop: Transport into the Future

SeaRoc and Natural Power helping EDF's Paimpol-Brehat Tidal Farm

New nanomaterial maintains conductivity in three dimensions

NANO TECH
US Navy boss questions mixed-gender Marine squad study

Britain to gift more counter-IED help to Pakistan

Norwegian Army receives CV90s from BAE Systems

Army says Ranger School will stay open to women

NANO TECH
Science provides new way to peer into pores

Using DNA origami to build nanodevices of the future

Nanoporous gold sponge makes DNA detector

Researchers use laser to levitate, glowing nanodiamonds in vacuum

NANO TECH
Canada Dominates European Rover Challenge 2015

'Hedgehog' Robots Hop, Tumble in Microgravity

For these 'cyborgs', keys are so yesterday

Australian scientists sending robot after destructive starfish




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.