Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
New nanowire structure absorbs light efficiently
by Staff Writers
Aalto, Finland (SPX) Feb 26, 2015


Initially the substrate is prepared by depositing Au nanoparticles on it and covering it with a hole-patterned oxide. The first nanowires grow from these holes and after the oxide is removed, the other type of nanowires are grown via the deposited nanoparticles. The resulting dual-type array is presented on the electron micrograph on the right. Image courtesy Aalto University.

Researchers at Aalto University, Finland have developed a new method to implement different types of nanowires side-by-side into a single array on a single substrate. The new technique makes it possible to use different semiconductor materials for the different types of nanowires.

'We have succeeded in combining nanowires grown by the VLS (vapor-liquid-solid) and SAE (selective-area epitaxy) techniques onto the same platform. The difference compared with studies conducted previously on the same topic is that in the dual-type array the different materials do not grow in the same nanowire, but rather as separate wires on the same substrate', says Docent Teppo Huhtio.

The research results were published in the Nano Letters journal.

Several applications
The new fabrication process has many phases. First, gold nanoparticles are spread on a substrate. Next, the substrate is coated with silicon oxide, into which small holes are then patterned using electron beam lithography.

In the first step of growth, (SAE), nanowires grow from where the holes are located, after which the silicon oxide is removed. In the second phase different types of nanowires are grown with the help of the gold nanoparticles (VLS). The researchers used metalorganic vapor phase epitaxy reactor in which the starting materials decompose at a high temperature, forming semiconductor compounds on the substrate.

'In this way we managed to combine two growth methods into the same process', says doctoral candidate Joona-Pekko Kakko.

'We noticed in optical reflection measurements that light couples better to this kind of combination structure. For instance, a solar cell has less reflection and better absorption of light', Huhtio adds.

In addition to solar cells and LEDs, the researchers also see good applications in thermoelectric generators. Further processing for component applications has already begun.

Nanowires are being intensely researched, because semiconductor components that are currently in use need to be made smaller and more cost-effective. The nanowires made out of semiconductor materials are typically 1-10 micrometres in length, with diameters of 5-100 nanometres.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Aalto University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution
Washington DC (SPX) Feb 25, 2015
Newly developed tiny antennas, likened to spotlights on the nanoscale, offer the potential to measure food safety, identify pollutants in the air and even quickly diagnose and treat cancer, according to the Australian scientists who created them. The new antennas are cubic in shape. They do a better job than previous spherical ones at directing an ultra-narrow beam of light where it is nee ... read more


NANO TECH
Britain adding Brimstone 2 missiles to Typhoon arsensal

Boeing and Raytheon bid for Saudi command-and-control deal

Sensors Detect Icing Conditions to Help Protect Airplanes

Slovakia seeking Black Hawk helos

NANO TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

NANO TECH
SIM maker Gemalto confirms spy attacks likely

US offers $3 mn reward for Russian sought in bank hack

NSA chief seeks compromise on encrypted phone snooping

US State Dept blocks thousands of hack attacks every day

NANO TECH
Philippines to send home Chinese energy experts

Massive clean energy opportunities in reach in Western Australia

EU unveils plans for historic single energy market

India's Modi says energy pledge not based on foreign pressure

NANO TECH
'Ecosystem services' help assess ocean energy development

In quest for better lithium-air batteries, chemists boost carbon's stability

Warming up the world of superconductors

Saving energy: Increasing oil flow in the keystone pipeline with electric fields

NANO TECH
Indian, Israeli companies forming joint venture for high-tech systems

Polaris Defense showcases ultra-light off-road military vehicle

Iraq orders counter-mine, counter-IED vehicles

Moths shed light on how to fool enemy sonar

NANO TECH
New nanowire structure absorbs light efficiently

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution

Nanotechnology: Better measurements of single molecule circuits

NANO TECH
Japan's Robear: Strength of a robot, face of a bear

HAPTIX Starts Work to Provide Prosthetic Hands with Sense of Touch

Talking Japanese space robot back on Earth

IBM brings Watson supercomputer to Japan via SoftBank




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.