. Nano Technology News .




NANO TECH
New nanoscale imaging method finds application in plasmonics
by Staff Writers
Washington DC (SPX) Jul 17, 2013


Infrared laser light (purple) from below a sample (blue) excites ring-shaped nanoscale plasmonic resonator structures (gold). Hot spots (white) form in the rings' gaps. In these hot spots, infrared absorption is enhanced, allowing for more sensitive chemical recognition. A scanning AFM tip detects the expansion of the underlying material in response to absorption of infrared light. Credit: NIST.

Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland have shown how to make nanoscale measurements of critical properties of plasmonic nanomaterials-the specially engineered nanostructures that modify the interaction of light and matter for a variety of applications, including sensors, cloaking (invisibility), photovoltaics and therapeutics.

Their technique is one of the few that allows researchers to make actual physical measurements of these materials at the nanoscale without affecting the nanomaterial's function.

Plasmonic nanomaterials contain specially engineered conducting nanoscale structures that can enhance the interaction between light and an adjacent material, and the shape and size of such nanostructures can be adjusted to tune these interactions. Theoretical calculations are frequently used to understand and predict the optical properties of plasmonic nanomaterials, but few experimental techniques are available to study them in detail.

Researchers need to be able to measure the optical properties of individual structures and how each interacts with surrounding materials directly in a way that doesn't affect how the structure functions.

"We want to maximize the sensitivity of these resonator arrays and study their properties," says lead researcher Andrea Centrone. "In order to do that, we needed an experimental technique that we could use to verify theory and to understand the influence of nanofabrication defects that are typically found in real samples. Our technique has the advantage of being extremely sensitive spatially and chemically, and the results are straightforward to interpret."

The research team turned to photothermal induced resonance (PTIR), an emerging chemically specific materials analysis technique, and showed it can be used to image the response of plasmonic nanomaterials excited by infrared (IR) light with nanometer-scale resolution.

The team used PTIR to image the absorbed energy in ring-shaped plasmonic resonators. The nanoscale resonators focus the incoming IR light within the rings' gaps to create "hot spots" where the light absorption is enhanced, which makes for more sensitive chemical identification.

For the first time, the researchers precisely quantified the absorption in the hot spots and showed that for the samples under investigation, it is approximately 30 times greater than areas away from the resonators.

The researchers also showed that plasmonic materials can be used to increase the sensitivity of IR and PTIR spectroscopy for chemical analysis by enhancing the local light intensity, and thereby, the spectroscopic signal.

Their work further demonstrated the versatility of PTIR as a measurement tool that allows simultaneous measurement of a nanomaterial's shape, size, and chemical composition-the three characteristics that determine a nanomaterial's properties.

Unlike many other methods for probing materials at the nanoscale, PTIR doesn't interfere with the material under investigation; it doesn't require the researcher to have prior knowledge about the material's optical properties or geometry; and it returns data that is more easily interpretable than other techniques that require separating the response of the sample from response of the probe.

For background on PTIR, see the February 2013 NIST Tech Beat story, "NIST Captures Chemical Composition with Nanoscale Resolution".

*B. Lahiri, G. Holland, V. Aksyuk and A. Centrone. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Letters. June 18, 2013. DOI: 10.1021/nl401284m.

.


Related Links
National Institute of Standards and Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
York Nanocentre researchers image individual atoms in a living catalytic reaction
York, UK (SPX) Jul 16, 2013
Groundbreaking new electron microscopy technology developed at the York JEOL Nanocentre at the University of York is allowing researchers to observe and analyse single atoms, small clusters and nanoparticles in dynamic in-situ experiments for the first time. The influential work being carried out at York is opening up striking new opportunities for observing and understanding the role of a ... read more


NANO TECH
Russian 5G fighters boast cutting-edge life support systems

Northrop Grumman Selected by UK Ministry of Defence to Support Large Aircraft Infrared Countermeasures Systems

Lockheed Martin Delivers 100th Targeting System for F-35

Russia to design a new strategic bomber

NANO TECH
Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

NANO TECH
Huawei spies for China, says ex-CIA chief

Britain to review cyber-security agreement with Huawei

Eye-tracking could outshine passwords if made user-friendly

US judge refuses to drop key charge against Manning

NANO TECH
LADWP Officials Announce Expanded Electric Vehicle Program

Six Tech Advancements Changing the Fossil Fuels Game

Americans continue to use more renewable energy sources

Australia to scrap carbon tax for emissions trading

NANO TECH
Algerian energy sector in decline amid security concerns

Israel's dilemma: Where to sell the east Med gas

FuelFX Brings Revolutionary Augmented Reality Mobile Apps to Energy and High-Tech Industries

Indonesian graft court jails third Chevron employee

NANO TECH
US jets drop unarmed bombs on Australia's Great Barrier Reef

Northrop Grumman Awarded Contract for LITENING Targeting System Sustainment

Raytheon's advanced uncooled thermal technology preferred by international land forces

Novel Hollow-Core Optical Fiber to Enable High-Power Military Sensors

NANO TECH
New nanoscale imaging method finds application in plasmonics

York Nanocentre researchers image individual atoms in a living catalytic reaction

NASA Engineer Achieves Another Milestone in Emerging Nanotechnology

Efficient Production Process for Coveted Nanocrystals

NANO TECH
Best artificial intelligence programs said only as smart as 4-year-old

Humanoid robot makes appearance

Humanoid robot that could save people in disasters unveiled

DARPA's ATLAS Robot Unveiled




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement