Nano Technology News  
NANO TECH
New industrial possibilities for nanoporous thin films
by Staff Writers
Leuven, Belgium (SPX) Dec 16, 2015


The 3D structure of the metal-organic framework used in this study. The nanopores are represented as yellow balls.

Metal-organic frameworks (MOFs) are a new type of materials with nanoscale pores. Bioscience engineers from KU Leuven, Belgium, have developed an alternative method that produces these materials in the form of very thin films, so that they can easily be used for high-tech applications such as microchips.

Metal-organic frameworks (MOFs) are a recently developed type of materials that consist of a nanoporous grid of both organic molecules and metal ions. MOFs take shape as the organic molecules push the metal ions apart, so that a regular pattern of tiny holes or nanopores develops.

The size of the pores can be tuned at the nanoscale level (with a nanometre being a billionth of a metre). The internal surface of an MOF, formed by all these pores, varies in size from 1,000 to 5,000 square metres per gram of material. MOFs can be seen as microscopic sponges that can absorb a lot of material.

This property makes MOFs interesting in terms of applications. "Researchers are already looking into these applications", says Professor Rob Ameloot from the KU Leuven Centre for Surface Chemistry and Catalysis.

"They are examining the use of MOFs as catalysts to accelerate chemical reactions of guest molecules in the MOF pores. Another possible application is gas storage, as the internal surface of MOFs can hold large amounts.

So far, some applications were not considered feasible due to the production procedure for MOFs. The conventional method involves lab-scale wet chemistry - the traditional chemistry with solutions and solvents. The end result is a powder.

For integrated, nanoscale applications, the particles of that powder are too large, while a method with solutions is not pure enough. In the case of gas sensors, for instance, the MOF material has to be deposited as a thin film over the surface of the electrical circuit. That is not possible if you use the conventional production procedure."

Lead author Ivo Stassen set out to find a production method other than wet chemistry. He used vapours and gases instead of liquids.

"Vapour-phase deposition is already a common method to produce high-tech devices. We are the first to use this method for the production of these highly porous materials. We first deposit layers of zinc and let them react with the vapour of the organic material. "The organic material permeates the zinc, the volume of the whole expands, and it is fully converted into a material with a regular structure and nanopores", Stassen explains.

To fine-tune the procedure, he is collaborating with the Leuven-based research centre imec, which specialises in nanoelectronics. KU Leuven and imec have jointly submitted a patent application.

"This alternative production method opens up new possibilities for MOFs in terms of applications and industries. Chemical vapour deposition is a common technique in nanofabrication. Therefore, new MOF applications can be developed relatively quickly: gas sensors, nanochip components, and improved batteries", Stassen concludes.

This research was carried out in collaboration with imec, CSIRO (Australia), and MBI (Singapore).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
KU Leuven
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Heat radiates 10,000 times faster at the nanoscale
Ann Arbor MI (SPX) Dec 14, 2015
When heat travels between two objects that aren't touching, it flows differently at the smallest scales - distances on the order of the diameter of DNA, or 1/50,000 of a human hair. While researchers have been aware of this for decades, they haven't understood the process. Heat flow often needs to be prevented or harnessed and the lack of an accurate way to predict it represents a bottlene ... read more


NANO TECH
China Southern Airlines orders 110 planes worth $10 bn from Boeing

Northrop Grumman completes B-2 bomber maintenance

Boeing delivers final Peace Eagle aircraft to Turkey

Orbital ATK secures patent for helicopter protection system

NANO TECH
China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

NANO TECH
Social media link to attacks poses conundrum

DARPA Exploring Ways to Protect Nation's Electrical Grid from Cyber Attack

Data encryption in sharp focus after deadly attacks

Twitter issues warnings of 'state-sponsored hacking'

NANO TECH
Recent US fuel economy improvements on par with 1970s

MIT Research offers new approach for China's carbon trading system

UN climate deal blow to fossil fuels: green groups

Addressing climate change should start with energy efficiency

NANO TECH
CWRU researchers tailor power source for wearable electronics

Physicists discover material for a more efficient energy storage

Better catalysts for green energy

German physicists see landmark in nuclear fusion quest

NANO TECH
U.S. Marine Corps to purchase Raytheon PERM munitions

Squad X takes steps toward assisting dismounted soldiers and marines

Kaman announces $54 million in new bomb fuze orders

U.S. Army awards Harris $800M expeditionary warfare contract

NANO TECH
Scientists blueprint tiny cellular 'nanomachine'

Nanoscale one-way-street for light

Microscope creates near-real-time videos of nanoscale processes

New industrial possibilities for nanoporous thin films

NANO TECH
Tech titans pledge $1 bn for artificial intelligence research

Robot adds new twist to NIST antenna measurements and calibrations

UW roboticists learn to teach robots from babies

Swimming devices could deliver drugs inside the body









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.