Nano Technology News  
NANO TECH
New design rule brings nature-inspired nanostructures one step closer
by Staff Writers
Berkeley CA (SPX) Oct 08, 2015


Snakes on a plane: this atomic-resolution simulation of a two-dimensional peptoid nanosheet reveals a snake-like structure never seen before. The nanosheet's layers include a water-repelling core (yellow), peptoid backbones (white), and charged sidechains (magenta and cyan). The right corner of the top layer of the nanosheet has been "removed" to show how the backbone's alternating rotational states give the backbones a snake-like appearance (red and blue ribbons). Surrounding water molecules are red and white. Image courtesy Ranjan Mannige, Berkeley Lab. For a larger version of this image please go here.

Scientists aspire to build nanostructures that mimic the complexity and function of nature's proteins, but are made of durable and synthetic materials. These microscopic widgets could be customized into incredibly sensitive chemical detectors or long-lasting catalysts, to name a few possible applications.

But as with any craft that requires extreme precision, researchers must first learn how to finesse the materials they'll use to build these structures. A discovery by scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), and reported Oct. 7 in the advance online publication of the journal Nature, is a big step in this direction.

The scientists discovered a design rule that enables a recently created material to exist. The material is a peptoid nanosheet. It's a flat structure only two molecules thick, and it's composed of peptoids, which are synthetic polymers closely related to protein-forming peptides.

The design rule controls the way in which polymers adjoin to form the backbones that run the length of nanosheets. Surprisingly, these molecules link together in a counter-rotating pattern not seen in nature. This pattern allows the backbones to remain linear and untwisted, a trait that makes peptoid nanosheets larger and flatter than any biological structure.

The Berkeley Lab scientists say this never-before-seen design rule could be used to piece together complex nanosheet structures and other peptoid assemblies such as nanotubes and crystalline solids.

What's more, they discovered it by combining computer simulations with x-ray scattering and imaging methods to determine, for the first time, the atomic-resolution structure of peptoid nanosheets.

"This research suggests new ways to design biomimetic structures," says Steve Whitelam, a co-corresponding author of the Nature paper. "We can begin thinking about using design principles other than those nature offers."

Whitelam is a staff scientist in the Theory Facility at the Molecular Foundry, a DOE Office of Science user facility located at Berkeley Lab. He led the research with co-corresponding author Ranjan Mannige, a postdoctoral researcher at the Molecular Foundry; and Ron Zuckermann, who directs the Molecular Foundry's Biological Nanostructures Facility. They used the high-performance computing resources of the National Energy Research Scientific Computing Center (NERSC), another DOE Office of Science user facility located at Berkeley Lab.

Peptoid nanosheets were discovered by Zuckermann's group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This "molecular paper" has become a hot prospect as a protein-mimicking platform for molecular design.

To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets' backbone, they were surprised to see a design rule not found in the field of protein structural biology.

Here's the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

This rule doesn't apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

"It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now," says Mannige. "This rule could perhaps be used to build many more unrealized structures."

Adds Zuckermann, "We also expect there are other design principles waiting to be discovered, which could lead to even more biomimetic nanostructures."

Other Molecular Foundry scientists who contributed to this research are Thomas Haxton, Caroline Proulx, Ellen Robertson, and Alessia Battigelli.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Developing a nanoscale 'clutch'
Bristol, UK (SPX) Oct 07, 2015
A model microscopic system to demonstrate the transmission of torque in the presence of thermal fluctuations - necessary for the creation of a tiny 'clutch' operating at the nanoscale - has been assembled at the University of Bristol as part of an international collaboration. When driving a car, the clutch mechanically carries the torque produced by the engine to the chassis of the vehicle ... read more


NANO TECH
German military halts Eurofighter deliveries over flaw

Russian missile firm to hold rival MH17 briefing as Dutch report released

NASA Instruments Head to Germany for Alternative Fuels Research

L-3 installing mission systems on Coast Guard C-130J

NANO TECH
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

NANO TECH
Lockheed Martin and Guardtime Technology target cyber threats

Chinese artist Ai Weiwei posts photos of suspected bugging devices

DHS taps Raytheon for network contract

CIA pulled officers from China after govt hack: report

NANO TECH
EDF for carbon price floor

Shift from fossil fuels risks popping 'carbon bubble': World Bank

DOE selects UC Berkeley to lead US-China energy and water consortium

Now 'right moment' for carbon tax: IMF chief

NANO TECH
Knit it, braid it, turn it on and use it!

New Oregon approach for 'nanohoops' could energize future devices

Superconductivity trained to promote magnetization

A necklace of fractional vortices

NANO TECH
Officer, 37, becomes third woman to pass US Ranger school

U.S. orders recoilless rifle ammunition

AM General announces new Humvee work

U.K. to boost equipment supply for Jordan

NANO TECH
New design rule brings nature-inspired nanostructures one step closer

Molecular nanoribbons as electronic highways

Developing a nanoscale 'clutch'

Pirouetting in the spotlight

NANO TECH
More-flexible machine learning

Psychic robot will know what you really meant to do

Bio-inspired robotic finger looks, feels and works like the real thing

U.S. Navy orders new robots, servicing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.