Nano Technology News  
NANO TECH
New acoustic technique reveals structural information in nanoscale materials
by Staff Writers
Atlanta GA (SPX) Dec 31, 2015


This is a schematic representation of the atomic force microscope interacting with the material surface. Image courtesy Rama Vasudevan, ORNL. For a larger version of this image please go here.

Understanding where and how phase transitions occur is critical to developing new generations of the materials used in high-performance batteries, sensors, energy-harvesting devices, medical diagnostic equipment and other applications. But until now there was no good way to study and simultaneously map these phenomena at the relevant length scales.

Now, researchers at the Georgia Institute of Technology and Oak Ridge National Laboratory (ORNL) have developed a new nondestructive technique for investigating these material changes by examining the acoustic response at the nanoscale. Information obtained from this technique - which uses electrically-conductive atomic force microscope (AFM) probes - could guide efforts to design materials with enhanced properties at small size scales.

The approach has been used in ferroelectric materials, but could also have applications in ferroelastics, solid protonic acids and materials known as relaxors. Sponsored by the National Science Foundation and the Department of Energy's Office of Science, the research was reported December 15 in the journal Advanced Functional Materials.

"We have developed a new characterization technique that allows us to study changes in the crystalline structure and changes in materials behavior at substantially smaller length scales with a relatively simple approach," said Nazanin Bassiri-Gharb, an associate professor in Georgia Tech's Woodruff School of Mechanical Engineering. "Knowing where these phase transitions happen and at which length scales can help us design next-generation materials."

In ferroelectric materials such as PZT (lead zirconate titanate), phase transitions can occur at the boundaries between one crystal type and another, under external stimuli. Properties such as the piezoelectric and dielectric effects can be amplified at the boundaries, which are caused by the multi-element "confused chemistry" of the materials. Determining when these transitions occur can be done in bulk materials using various techniques, and at the smallest scales using an electron microscope.

The researchers realized they could detect these phase transitions using acoustic techniques in samples at size scales between the bulk and tens of atoms. Using band-excitation piezoresponse force microscopy (BE-PFM) techniques developed at ORNL, they analyzed the resulting changes in resonant frequencies to detect phase changes in sample sizes relevant to the material applications.

To do that, they applied an electric field to the samples using an AFM tip that had been coated with platinum to make it conductive, and through generation and detection of a band of frequencies.

"We've had very good techniques for characterizing these phase changes at the large scale, and we've been able to use electron microscopy to figure out almost atomistically where the phase transition occurs, but until this technique was developed, we had nothing in between," said Bassiri-Gharb. "To influence the structure of these materials through chemical or other means, we really needed to know where the transition breaks down, and at what length scale that occurs. This technique fills a gap in our knowledge."

The changes the researchers detect acoustically are due to the elastic properties of the materials, so virtually any material with similar changes in elastic properties could be studied in this way. Bassiri-Gharb is interested in ferroelectrics such as PZT, but materials used in fuel cells, batteries, transducers and energy-harvesting devices could also be examined this way.

"This new method will allow for much greater insight into energy-harvesting and energy transduction materials at the relevant length sales," noted Rama Vasudeven, the first author of the paper and a materials scientist at the Center for Nanophase Materials Sciences, a U.S. Department of Energy user facility at ORNL.

The researchers also modeled the relaxor-ferroelectric materials using thermodynamic methods, which supported the existence of a phase transition and the evolution of a complex domain pattern, in agreement with the experimental results.

Use of the AFM-based technique offers a number of attractive features. Laboratories already using AFM equipment can easily modify it to analyze these materials by adding electronic components and a conductive probe tip, Bassiri-Gharb noted. The AFM equipment can be operated under a range of temperature, electric field and other environmental conditions that are not easily implemented for electron microscope analysis, allowing scientists to study these materials under realistic operating conditions.

"This technique can probe a range of different materials at small scales and under difficult environmental conditions that would be inaccessible otherwise," said Bassiri-Gharb. "Materials used in energy applications experience these kinds of conditions, and our technique can provide the information we need to engineer materials with enhanced responses."

Though widely used, relaxor-ferroelectrics and PZT are still not well understood. In relaxor-ferroelectrics, for example, it's believed that there are pockets of material in phases that differ from the bulk, a distortion that may help confer the material's attractive properties. Using their technique, the researchers confirmed that the phase transitions can be extremely localized. They also learned that high responses of the materials occurred at those same locations.

Next steps would include varying the chemical composition of the material to see if those transitions - and enhanced properties - can be controlled. The researchers also plan to examine other materials.

"It turns out that many energy-related materials have electrical transitions, so we think this is going to be very important for studying functional materials in general," Bassiri-Gharb added. "The potential for gaining new understanding of these materials and their applications are huge."

Rama K. Vasudevan, et al., "Acoustic Detection of Phase Transitions at the Nanoscale," (Advanced Functional Materials, 2015).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanodevices at one-hundredth the cost
Boston MA (SPX) Dec 24, 2015
Microelectromechanical systems - or MEMS - were a $12 billion business in 2014. But that market is dominated by just a handful of devices, such as the accelerometers that reorient the screens of most smartphones. That's because manufacturing MEMS has traditionally required sophisticated semiconductor fabrication facilities, which cost tens of millions of dollars to build. Potentially usefu ... read more


NANO TECH
Boeing receives $358 million order for Laser JDAM kits

KAI completes Surion-variant helicopter development

Pentagon issues contract modification for F-35 logistics services

Russia and Iran discuss potential helicopter delivery

NANO TECH
Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

NANO TECH
Palantir raises $880 mn in new funding round

Swedish researchers reveal security hole

Chinese hackers target Taiwan opposition, media ahead of vote: officials

Congress passes long-stalled cybersecurity bill

NANO TECH
US Christmas lights use more energy than entire countries

Improving electric motor efficiency via shape optimization

Cool roofs in China offer enhanced benefits during heat waves

Recent US fuel economy improvements on par with 1970s

NANO TECH
Probing Mars, charging cars

NREL research advances hydrogen production efforts

ORNL achieves milestone with plutonium-238 sample

New hybrid electrolyte for solid-state lithium batteries

NANO TECH
Turkey contracts Otokar for Cobra II armored vehicles

Forensic seismology tested on 2006 munitions depot 'cook-off' in Baghdad

Kongsberg Protector selected for General Dynamics Stryker

German Army orders more Boxer armored vehicles

NANO TECH
Nanodevices at one-hundredth the cost

Scientists blueprint tiny cellular 'nanomachine'

Researchers demonstrate tracking of individual catalyst nanoparticles

New industrial possibilities for nanoporous thin films

NANO TECH
Magnetic nanoparticle chains offer new technique for controlling soft robots

Teaching machines to see

Scientists teach machines to learn like humans

SSL selected for NASA project to develop robotic on-orbit satellite assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.