Nano Technology News  
NANO TECH
Nanotubes line up to form films
by Staff Writers
Houston TX (SPX) Apr 07, 2016


Rice University researchers discovered a method to make highly aligned nanotube films. The films may become valuable for flexible electronics and photonic devices. Image courtesy Jeff Fitlow/Rice University. For a larger version of this image please go here.

A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. Scientists at Rice, with support from Los Alamos National Laboratory, have made inch-wide films of densely packed, chirality-enriched single-walled carbon nanotubes through a process revealed in Nature Nanotechnology.

In the right solution of nanotubes and under the right conditions, the tubes assemble themselves by the millions into long rows that are aligned better than once thought possible, the researchers reported.

The thin films offer possibilities for making flexible electronic and photonic (light-manipulating) devices, said Rice physicist Junichiro Kono, whose lab led the study. Think of a bendable computer chip, rather than a brittle silicon one, and the potential becomes clear, he said.

"Once we have centimeter-sized crystals consisting of single-chirality nanotubes, that's it," Kono said. "That's the holy grail for this field. For the last 20 years, people have been looking for this."

The Rice lab is closing in, he said, but the films reported in the current paper are "chirality-enriched" rather than single-chirality. A carbon nanotube is a cylinder of graphene, with its atoms arranged in hexagons. How the hexagons are turned sets the tube's chirality, and that determines its electronic properties. Some are semiconducting like silicon, and others are metallic conductors.

A film of perfectly aligned, single-chirality nanotubes would have specific electronic properties. Controlling the chirality would allow for tunable films, Kono said, but nanotubes grow in batches of random types.

For now, the Rice researchers use a simple process developed at the National Institute of Standards and Technology to separate nanotubes by chirality. While not perfect, it was good enough to let the researchers make enriched films with nanotubes of different types and diameters and then make terahertz polarizers and electronic transistors.

The Rice lab discovered the filtration technique in late 2013 when graduate students and lead authors Xiaowei He and Weilu Gao inadvertently added a bit too much water to a nanotube-surfactant suspension before feeding it through a filter assisted by vacuum. (Surfactants keep nanotubes in a solution from clumping.)

The film that formed on the paper filter bore further investigation. "Weilu checked the film with a scanning electron microscope and saw something strange," He said. Rather than drop randomly onto the paper like pickup sticks, the nanotubes - millions of them - had come together in tight, aligned rows.

"That first picture gave us a clue we might have something totally different," He said. A year and more than 100 films later, the students and their colleagues had refined their technique to make nanotube wafers up to an inch wide (limited only by the size of their equipment) and of any thickness, from a few to hundreds of nanometers.

Further experiments revealed that each element mattered: the type of filter paper, the vacuum pressure and the concentration of nanotubes and surfactant. Nanotubes of any chirality and diameter worked, but each required adjustments to the other elements to optimize the alignment.

The films can be separated from the paper and washed and dried for use, the researchers said.

They suspect multiwalled carbon nanotubes and non-carbon nanotubes like boron nitride would work as well.

Co-author Wade Adams, a senior faculty fellow at Rice who specializes in polymer science, said the discovery is a step forward in a long quest for aligned structures.

"They formed what is called a monodomain in liquid crystal technology, in which all the rigid molecules line up in the same direction," Adams said. "It's astonishing. (The late Rice Nobel laureate) Rick Smalley and I worked very hard for years to make a single crystal of nanotubes, but these students have actually done it in a way neither of us ever imagined."

Why do the nanotubes line up? Kono said the team is still investigating the mechanics of nucleation - that is, how the first few nanotubes on the paper come together. "We think the nanotubes fall randomly at first, but they can still slide around on the paper," he said.

"Van der Waals force brings them together, and they naturally seek their lowest-energy state, which is in alignment." Because the nanotubes vary in length, the researchers suspect the overhangs force other tubes to line up as they join the array.

The researchers found their completed films could be patterned with standard lithography techniques. That's yet another plus for manufacturers, said Kono, who started hearing buzz about the discovery months before the paper's release.

"I gave an invited talk about our work at a carbon nanotube conference, and many people are already trying to reproduce our results," he said. "I got so much enthusiastic response right after my talk. Everybody asked for the recipe."

Research paper: Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanocage surfaces get 'makeover' in room temperature
Kyoto, Japan (SPX) Apr 05, 2016
Kyoto University researchers have discovered a way of replacing surface ions of copper oxide nanocrystals at ambient conditions - a feat that will make nanocage production considerably simpler. Ionic semiconductor nanocages can be used as photoelectric conversion materials like those used in solar panels. Like a cage in the literal sense, nanocages can also encapsulate drugs and enzymes, p ... read more


NANO TECH
New system helps aircraft automatically avoid mid-air collisions

BAE, Lockheed UK building F-35 facilities for RAF

New insight into interaction of volcanic ash with jet engines

Navy funds Boeing procurement of P-8A Poseidon components

NANO TECH
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

NANO TECH
China's ZTE executives to step down amid US sanctions row

US military cyber head questions Beijing's spying activities

New laser technique promises super-fast, secure quantum cryptography

WhatsApp toughens encryption after Apple-FBI row

NANO TECH
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

NANO TECH
Nanoporous material's strange "breathing" behavior

Heat and light get larger at the nanoscale

Nanocage surfaces get 'makeover' in room temperature

Nanolight at the edge

NANO TECH
Australia approved for purchase of small diameter bombs

Kalashnikov delivers new anti-tank missiles to Russia

Saab continues ATM maintenance at Swedish military airports

U.S. to provide new tactical vehicles to Iraq, Colombia

NANO TECH
Nanoporous material's strange "breathing" behavior

Heat and light get larger at the nanoscale

Nanocage surfaces get 'makeover' in room temperature

Nanolight at the edge

NANO TECH
Private equity firm acquires iRobot defense business

Gestures improve communication - even with robots

Robot Technology Set to Invade Earth

Moving microswimmers with tiny swirling flows









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.