. Nano Technology News .




.
NANO TECH
Nanorod-Assembled Order Affects Diffusion Rate and Direction
by Staff Writers
Atlanta GA (SPX) Feb 09, 2012

File image.

Some of the recent advancements in nanotechnology depend critically on how nanoparticles move and diffuse on a surface or in a fluid under non-ideal to extreme conditions. Georgia Tech has a team of researchers dedicated to advancing this frontier.

Rigoberto Hernandez, a professor in the School of Chemistry and Biochemistry, investigates these relationships by studying three-dimensional particle dynamics simulations on high-performance computers. His new findings, which focus on the movements of a spherical probe amongst static needles, have landed on the cover of February's The Journal of Physical Chemistry B.

Hernandez and his former Ph.D. student, Ashley Tucker, assembled the rodlike scatterers in one of two states during his simulations: disordered (isotropic) and ordered (nematic). When the nanorods were disordered, pointing in various directions, Hernandez found that a particle typically diffused uniformly in all directions.

When every rod pointed in the same direction, the particle, on average, diffused more in the same direction as the rods than against the grain of the rods. In this nematic state, the probe's movement mimicked the elongated shape of the scatterers.

The surprise was that the particles sometimes diffused faster in the nematic environment than in the disordered environment. That is, the channels left open between the ordered nanorods don't just steer nanoparticles along a direction, they also enable them to speed right through.

As the density of the scatterers is increased, the channels become more and more crowded. The particle diffusing through these increasingly crowded assemblies slows down dramatically in the simulation. Nevertheless, the researchers found that the nematic scatterers continued to accommodate faster diffusion than disordered scatterers.

"These simulations bring us a step closer to creating a nanorod device that allows scientists to control the flow of nanoparticles," said Hernandez. "Blue-sky applications of such devices include the creation of new light patterns, information flow and other microscopic triggers."

For example, if scientists need a probe to diffuse in a specific direction at a particular speed, they could trigger the nanorods to move into a specified direction.

When they need to change the particle's direction, scatterers could then be triggered to rearrange into a different direction.

Indeed, the trigger could be the absence of sufficient nanoparticles in a given part of the device. The ensuing reordering of the nanorods would then drive a repopulation of nanoparticles that would then be available to perform a desired action, such as to stimulate light flow.

"While this NSF-funded work to better understand the motion of particles within complex arrays at the nanoscale is very fundamental," Hernandez says, "it has significant long-term implications on device fabrication and performance at such scales. It's fun to think about and provides great training for my students."

Related Links
Georgia Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Reducing ion exchange particles to nano-size shows big potential
Aiken SC (SPX) Feb 09, 2012
Sometimes bigger isn't better. Researchers at the U.S. Department of Energy's Savannah River National Laboratory have successfully shown that they can replace useful little particles of monosodium titanate (MST) with even tinier nano-sized particles, making them even more useful for a variety of applications. MST is an ion exchange material used to decontaminate radioactive and industrial ... read more


NANO TECH
Airline industry split widens over EU carbon 'tax' row

India's need for aerospace engineers to grow

Ultimate parachute jump: Diver to break sound barrier

NANO TECH
China's new rockets expected to debut within five years

China announces new launch rockets

NANO TECH
WikiLeaks suspect arraignment for February 23

Computer security firm Symantec extorted by hackers

NANO TECH
Germany forced to tap into electricity reserves

China to face electricity shortages?

NANO TECH
Israel boosts naval forces in gas fields

WWF urges banks to block Sakhalin oil plan and save whales

Graphene electronics moves into a third dimension

India should scale up green technologies

NANO TECH
AAI Test and Training to Provide ABE for USAF and SOCOM

Lockheed Martin Awarded JIEDDO OPS Services Contract

Northrop Grumman Selected for US Army's CIRCM Technical Demonstration Program

EU won't pay for Greece border fence

NANO TECH
Stanford engineers weld nanowires with light

Reducing ion exchange particles to nano-size shows big potential

Nanorod-Assembled Order Affects Diffusion Rate and Direction

NANO TECH
Unraveling a Butterfly's Aerial Antics Could Help Builders of Bug-Size Flying Robots


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement