Nanomushroom sensors: One material, many applications by Staff Writers Onna, Japan (SPX) Feb 26, 2018
A small rectangle of pink glass, about the size of a postage stamp, sits on Professor Amy Shen's desk. Despite its outwardly modest appearance, this little glass slide has the potential to revolutionize a wide range of processes, from monitoring food quality to diagnosing diseases. The slide is made of a 'nanoplasmonic' material - its surface is coated in millions of gold nanostructures, each just a few billionths of a square meter in size. Plasmonic materials absorb and scatter light in interesting ways, giving them unique sensing properties. Nanoplasmonic materials have attracted the attention of biologists, chemists, physicists and material scientists, with possible uses in a diverse array of fields, such as biosensing, data storage, light generation and solar cells. In several recent papers, Prof. Shen and colleagues at the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology (OIST), described their creation of a new biosensing material that can be used to monitor processes in living cells. "One of the major goals of nanoplasmonics is to search for better ways to monitor processes in living cells in real time," says Prof. Shen. Capturing such information can reveal clues about cell behavior, but creating nanomaterials on which cells can survive for long periods of time yet don't interfere with the cellular processes being measured is a challenge, she explains.
Counting Dividing Cells Researchers in OIST's Micro/Bio/Nanofluidics Unit described the sensor in a study recently published in the journal Advanced Biosystems. The most attractive feature of the material is that it allows cells to survive over long time periods. "Usually, when you put live cells on a nanomaterial, that material is toxic and it kills the cells," says Dr. Nikhil Bhalla, a postdoctoral researcher at OIST and first author of the paper. "However, using our material, cells survived for over seven days." The nanoplasmonic material is also highly sensitive: It can detect an increase in cells as small as 16 in 1000 cells. The material looks just like an ordinary pieces of glass. However, the surface is coated in tiny nanoplasmonic mushroom-like structures, known as nanomushrooms, with stems of silicon dioxide and caps of gold. Together, these form a biosensor capable of detecting interactions at the molecular level. The biosensor works by using the nanomushroom caps as optical antennae. When white light passes through the nanoplasmonic slide, the nanomushrooms absorb and scatter some of the light, changing its properties. The absorbance and scattering of light is determined by the size, shape and material of the nanomaterial and, more importantly, it is also affected by any medium in close proximity to the nanomushroom, such as cells that have been placed on the slide. By measuring how the light has changed once it emerges through the other side of the slide, the researchers can detect and monitor processes occurring on the sensor surface, such as cell division. "Normally, you have to add labels, such as dyes or molecules, to cells, to be able to count dividing cells," says Dr. Bhalla. "However, with our method, the nanomushrooms can sense them directly."
Scaling Up Producing large-scale nanoplasmonic materials is challenging because it is difficult to ensure uniformity across the entire material surface. For this reason, biosensors for routine clinical examinations, such as disease testing, are still lacking. In response to this problem, the OIST researchers developed a novel printing technique to create large-scale nanomushroom biosensors. With their method, they were able to develop a material consisting of approximately one million mushroom-like structures on a 2.5cm by 7.5cm silicon dioxide substrate. "Our technique is like taking a stamp, covering it with ink made from biological molecules, and printing onto the nanoplasmonic slide," says Shivani Sathish, a PhD student at OIST and co-author of the paper. The biological molecules increase the sensitivity of the material, meaning it can sense extremely low concentrations of substances, such as antibodies, and thus potentially detect diseases in their earliest stages. "Using our method, it is possible to create a highly sensitive biosensor that can detect even single molecules," says Dr. Bhalla, first author of the paper. Plasmonic and nanoplasmonic sensors offer important tools for many fields, from electronics to food production to medicine. For example, in December 2017, second year Ph.D student Ainash Garifullina from the Unit developed a new plasmonic material for monitoring the quality of food products during the manufacturing process. The results were published in the journal Analytical Methods. Prof. Shen and her unit say that, in the future, nanoplasmonic materials may even be integrated with emerging technologies, such as wireless systems in microfluidic devices, allowing users to take readings remotely and thereby minimizing the risk of contamination.
USTC realizes strong indirect coupling in distant nanomechanical resonators Beijing, China (SPX) Feb 20, 2018 New progress in graphene-based nanomechanical resonator systems has been achieved in Key Laboratory of Quantum Information and Synergetic Innovation Center of Quantum Information and Quantum Physics of USTC. The jointed group, led by Prof. GUO Guoping, Research Associate Prof. DENG Guangwei from USTC and Prof. TIAN Lin from UC Merced, realized strong coupling between distant phonon modes, by introducing a third resonator as a phonon cavity mode. Varying the resonant frequency of the phonon cavity ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |