. | . |
|
. |
by Staff Writers Houston TX (SPX) Jun 13, 2012
Thanks to a little serendipity, researchers at Rice University have created a tiny coaxial cable that is about a thousand times smaller than a human hair and has higher capacitance than previously reported microcapacitors. The nanocable, which is described this week in Nature Communications, was produced with techniques pioneered in the nascent graphene research field and could be used to build next-generation energy-storage systems. It could also find use in wiring up components of lab-on-a-chip processors, but its discovery is owed partly to chance. "We didn't expect to create this when we started," said study co-author Jun Lou, associate professor of mechanical engineering and materials science at Rice. "At the outset, we were just curious to see what would happen electrically and mechanically if we took small copper wires known as interconnects and covered them with a thin layer of carbon." The tiny coaxial cable is remarkably similar in makeup to the ones that carry cable television signals into millions of homes and offices. The heart of the cable is a solid copper wire that is surrounded by a thin sheath of insulating copper oxide. A third layer, another conductor, surrounds that. In the case of TV cables, the third layer is copper again, but in the nanocable it is a thin layer of carbon measuring just a few atoms thick. The coax nanocable is about 100 nanometers, or 100 billionths of a meter, wide. While the coaxial cable is a mainstay of broadband telecommunications, the three-layer, metal-insulator-metal structure can also be used to build energy-storage devices called capacitors. Unlike batteries, which rely on chemical reactions to both store and supply electricity, capacitors use electrical fields. A capacitor contains two electrical conductors, one negative and the other positive, that are separated by thin layer of insulation. Separating the oppositely charged conductors creates an electrical potential, and that potential increases as the separated charges increase and as the distance between them - occupied by the insulating layer - decreases. The proportion between the charge density and the separating distance is known as capacitance, and it's the standard measure of efficiency of a capacitor. The study reports that the capacitance of the nanocable is at least 10 times greater than what would be predicted with classical electrostatics. "The increase is most likely due to quantum effects that arise because of the small size of the cable," said study co-author Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science. The tiny coaxial cable is remarkably similar in makeup to the ones that carry cable television signals into millions of homes and offices. The heart of the cable is a solid copper wire that is surrounded by a thin sheath of insulating copper oxide. A third layer, another conductor, surrounds that. In the case of TV cables, the third layer is copper again, but in the nanocable it is a thin layer of carbon measuring just a few atoms thick. The coax nanocable is about 100 nanometers, or 100 billionths of a meter, wide. While the coaxial cable is a mainstay of broadband telecommunications, the three-layer, metal-insulator-metal structure can also be used to build energy-storage devices called capacitors. Unlike batteries, which rely on chemical reactions to both store and supply electricity, capacitors use electrical fields. A capacitor contains two electrical conductors, one negative and the other positive, that are separated by thin layer of insulation. Separating the oppositely charged conductors creates an electrical potential, and that potential increases as the separated charges increase and as the distance between them - occupied by the insulating layer - decreases. The proportion between the charge density and the separating distance is known as capacitance, and it's the standard measure of efficiency of a capacitor. The study reports that the capacitance of the nanocable is at least 10 times greater than what would be predicted with classical electrostatics. "The increase is most likely due to quantum effects that arise because of the small size of the cable," said study co-author Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor of Mechanical Engineering and Materials Science. Lou's and Ajayan's laboratories each specialize in fabricating and studying nanoscale materials and nanodevices that exhibit these types of intriguing quantum effects, but Ajayan and Lou said there was an element of chance to the nanocable discovery. When the project began 18 months ago, Rice postdoctoral researcher Zheng Liu, the lead co-author of the study, intended to make pure copper wires covered with carbon. The techniques for making the wires, which are just a few nanometers wide, are well-established because the wires are often used as "interconnects" in state-of-the-art electronics. Liu used a technique known as chemical vapor deposition (CVD) to cover the wires with a thin coating of carbon. The CVD technique is also used to grow sheets of single-atom-thick carbon called graphene on films of copper. "When people make graphene, they usually want to study the graphene and they aren't very interested in the copper," Lou said. "It's just used a platform for making the graphene." When Liu ran some electronic tests on his first few samples, the results were far from what he expected. "We eventually found that a thin layer of copper oxide - which is served as a dielectric layer - was forming between the copper and the carbon," said Liu. A copy of the Nature Communications paper is available here.
Rice University Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |