Nano Technology News  
NANO TECH
Nanoantenna lighting-rod effect produces fast optical switches
by Staff Writers
Southampton UK (SPX) Oct 26, 2016


This is Professor Otto Muskens. Image courtesy University of Southampton. For a larger version of this image please go here.

A team of scientists, led by the University of Southampton, have produced a fast nanoscale optical transistor using gold nanoantenna assisted phase transition. The work, published in the journal Light, Science and Applications, opens up new directions in antenna-assisted switches and optical memory.

Small nanostructures that can interact strongly with light are of interest for a range of emerging new applications including small optical circuits and metasurface flat optics. Nanoantennas are designed to have strong optical resonances where energy is concentrated far below the diffraction limit, the smallest scale possible using conventional optics.

Such extreme concentration of light can be used to enhance all kinds of effects related to localised energy conversion and harvesting, coupling of light to small molecules and quantum dots, and generating new frequencies of light through nonlinear optics.

Next to precise tuning of these antennas by design, an ability to actively tune their properties is of great interest.

Lead author Professor Otto Muskens, from the University of Southampton, said: "If we are able to actively tune a nanoantenna using an electrical or optical signal, we could achieve transistor-type switches for light with nanometer-scale footprint for datacommunication. Such active devices could also be used to tune the antenna's light-concentration effects leading to new applications in switchable and tuneable antenna-assisted processes."

The Southampton team used the properties of the antenna itself to achieve low energy optical switching of a phase-change material. The material used to achieve this effect was vanadium dioxide.

Vanadium dioxide is a special material with properties that can be switched from an insulator to a metal by increasing the temperature above the phase transition point (68C). Fabrication of this material is challenging and was produced by a team at the University of Salford, who specialise in thin-film deposition and who were able to grow very high quality films of this material.

Gold nanoantennas were fabricated on top of this thin film and were used to locally drive the phase transition of the vanadium dioxide.

Professor Muskens explained: "The nanoantenna assists the phase transition of the vanadium dioxide by locally concentrating energy near the tips of the antenna. It is like a lightning-rod effect.

These positions are also where the antenna resonances are the most sensitive to local perturbations. Antenna-assisted switching thus results a large effect while requiring only a small amount of energy."

The theoretical modelling was done by a team from the University of the Basque Country in San Sebastian, Spain. Their detailed calculations revealed that the nanoantennas provided a new pathway by local absorption around the antenna.

The antenna-assisted mechanism resulted in a much lower switching energy compared to just the VO2 film, corresponding to picojoule energies and a calculated efficiency of over 40 per cent.

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Southampton
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanotechnology for energy materials: Electrodes like leaf veins
Berlin, Germany (SPX) Oct 10, 2016
An international team headed by HZB scientist Prof. Michael Giersig has recently demonstrated for these applications that networks of metallic mesh possessing fractal-like nano-features surpass other metallic networks in utility. These findings have now been published in the most recent edition of the renowned journal Nature Communications. Their new development is based on what is termed ... read more


NANO TECH
Britain backs Heathrow airport expansion despite splits

U.K. Typhoon enhancements enter operational evaluation phase

Death sentence for Heathrow demolition village

Inmarsat Aviation and SITAONAIR to invest in future of aviation cockpit communications

NANO TECH
Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

China to enhance space capabilities with launch of Shenzhou-11

China closer to establishing permanent space station

NANO TECH
Maybe 100,000 hijacked devices used in cyber attack: Dyn

Safran announces Silicon Valley expansion

Non-state actor likely behind US cyber attack: Clapper

Test of Russian cyber defense system completed: Report

NANO TECH
Small impacts are reworking the moon's soil faster than scientists thoug

2016 Ends with Three Supermoons

Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Hunter's Supermoon to light up Saturday night sky

NANO TECH
Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink

A 'nano-golf course' to assemble precisely nanoparticules

NANO TECH
Thales targeting pod integrated, tested on Rafale fighter

U.S. Army patents new blast debris protection system

GenDyn unit to support U.S. Special Operations

Oshkosh gets $42 million JLTV delivery order

NANO TECH
Nanoantenna lighting-rod effect produces fast optical switches

Nanotechnology for energy materials: Electrodes like leaf veins

Electron beam microscope directly writes nanoscale features in liquid with metal ink

A 'nano-golf course' to assemble precisely nanoparticules

NANO TECH
Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

Robotic cleaning technique could automate neuroscience research

Germany stalls Chinese takeover of tech firm Aixtron

New mobile robot to support agri-tech experiments in the field









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.