Molecular Lego for nanoelectronics by Staff Writers Nuremberg, Germany (SPX) May 23, 2017
The ability to assemble electronic building blocks consisting of individual molecules is an important objective in nanotechnology. An interdisciplinary research group at Friedrich-Alexander Universitat Erlangen-Nurnberg (FAU) is now significantly closer to achieving this goal. The team of researchers headed by Prof. Dr. Sabine Maier, Prof. Dr. Milan Kivala and Prof. Dr. Andreas Gorling has successfully assembled and tested conductors and networks made up of individual, newly developed building block molecules. These could in future serve as the basis of components for optoelectronic systems, such as flexible flat screens or sensors. The FAU researchers have published their results in the journal Nature Communications. Lithographic techniques in which the required structures are cut from existing blocks are mainly employed at present to produce micro- and nano-electronic components. 'This is not unlike how a sculptor creates an object from existing material by cutting away what they do not need. How small we can make these structures is determined by the quality of the material and our mechanical skills,' explains Prof. Dr. Sabine Maier from the Chair of Experimental Physics. "We now have something like a set of Lego bricks for use in the nanoelectronic field; this enables us to fabricate the required objects 'bottom-up', in other words, we start from the base and place the tiny units one on top of the other." The researchers can now use these building blocks to produce the smallest one-dimensional structures -conductors - and two-dimensional structures -networks - under precision-controlled conditions. The structures are characterised by their extreme regularity with no structural flaws. Flawless structures of this kind are essential for producing minuscule nanoelectronic components with various properties. The basis of these synthetic organic semiconductors - the Lego bricks as it were - was synthesised at the Institute for Organic Chemistry at FAU. 'Our basic building block is a triangle consisting of 21 carbon atoms with one nitrogen atom at its centre, with either hydrogen, iodine or bromine deposited at the corners depending on the desired structure' clarifies Prof. Dr. Milan Kivala from the Chair of Organic Chemistry I. The FAU researchers attach the corresponding molecules to a carrier surface made of gold and this is then heated to 150 - 270C. This process initially forms hexagons or chains. When the samples reach a temperature of 270C, the molecular building blocks form chemically bound, flat and honeycomb-like meshes that are similar in structure to that of the Nobel Prize-winning material graphene. The research group has already managed to determine one of the major electrical properties - the so-called 'band gap'. 'We have established that the band gap of two-dimensional structures is smaller than that of one-dimensional arrangements of the same molecular building blocks,' adds Prof. Dr. Andreas Gorling from the Chair of Theoretical Chemistry. 'These insights will help us in the future to predict the properties of these structures and adjust them to the desired values for specific optoelectronic applications.' This research has opened up the possibility of fabricating ever-smaller nanoelectronic components. The current lithographic techniques used in the commercial production of microchips can only create structures larger than 14 nanometres. The conductors generated in Erlangen are only a little wider than one nanometre and therefore around fifty thousand times thinner than a human hair. However, a number of additional developments are necessary before they can be used in technological applications. For example, it is still necessary to find a suitable electrically non-conductive carrier material.
Munich, Germany (SPX) May 23, 2017 Tomorrow's computers will run on light, and gold nanoparticle chains show much promise as light conductors. Now Ludwig-Maximilians-Universitaet (LMU) in Munich scientists have demonstrated how tiny spots of silver could markedly reduce energy consumption in light-based computation. Today's computers are faster and smaller than ever before. The latest generation of transistors will have str ... read more Related Links University of Erlangen-Nuremberg Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |