|
. | . |
|
by Staff Writers Washington DC (SPX) Jun 05, 2015
Working with a device that slightly resembles a microscopically tiny tuning fork, researchers at the University of Tsukuba in Japan have recently developed coupled microcantilevers that can make mass measurements on the order of nanograms with only a 1 percent margin of error - potentially enabling the weighing of individual molecules in liquid environments. The findings are published this week in Applied Physics Letters, from AIP Publishing. The group's coupled microcantilevers measure mass on the cellular and subcellular scale by using self-excited oscillation, a process in which the feedback of an oscillating body controls the phase of the power source acting on it, allowing for sustained periodic motion. "Unlike the previous measurements made by coupled cantilevers, which can detect the existence of small mass but cannot quantitatively measure the mass, it doesn't require a special measurement environment, such as an ultrahigh vacuum," said Hiroshi Yabuno, a professor at the University of Tsukaba in Japan. Yabuno's graduate students Daichi Endo and Keiichi Higashino performed the measurements, and Yasuyuki Yamamoto and Sohei Matsumoto, collaborators at the National Institute of Advanced Industrial Science and Technology, constructed the coupled microcantilevers using MEMS device manufacturing methods. As all biological processes must take place in a liquid environment, this makes the group's cantilevers ideal for processes such as detecting DNA hybridization and characterizing, at the single cell level, whole proteomes - data that shows globally within such a cell which proteins are expressed where and when as a result of instructions contained in an organism's DNA genome. "From the features of the proposed method, it's easy to expect that we can obtain the same accuracy in a liquid environment," Yabuno said. The coupled cantilever, constructed from an etched silicon-insulator-silicon wafer, resembles a tiny tuning fork whose prongs measure 500 by 100 micrometers. The researchers tested their cantilever's capacities by measuring the mass of polystyrene microspheres, which have a mean diameter of 15.0 micrometers - the same order of magnitude as a liver cell. In their setup, a sphere was placed on one of the prongs - in a biological system, samples would be affixed by covalent mobilization, Yabuno said. The prongs were then both stimulated by a piezo actuator, a device that converts an electrical signal into a controlled physical displacement. In order to induce self-excited oscillation in the cantilevers, the motion of the actuator is automatically adjusted by a suitable feedback referring to the motion of one of the cantilevers. The sphere's presence on one of the prongs results in a mass difference ratio between the two, which affects the ensuing vibrations, as measured by a pair of laser Doppler vibrometers and observed in spectrum analysis of the cantilever's oscillating frequencies. "The method can be applied to more down-sized, nano-scale, coupled cantilevers," Yabuno said. "It can be expected to realize the measurement of infinitesimal mass, which is impossible in existing methods, even in any measurement environments." Future work for Yabuno and his colleagues involves using the cantilevers to obtain high-accuracy quantitative measurements of biological samples such as human cells and DNA in liquid media. The article, "Self-excited coupled-microcantilevers for mass sensing," is authored by Daichi Endo, Hiroshi Yabuno, Keiichi Higashino, Yasuyuki Yamamoto and Sohei Matsumoto. It will appear in the journal Applied Physics Letters on June 2, 2015 (DOI: 10.1063/1.4921082).
Related Links American Institute of Physics Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |