Nano Technology News  
NANO TECH
MIT mathematicians identify limits to heat flow at the nanoscale
by Staff Writers
Boston MA (SPX) Nov 30, 2015


As a demonstration, the scientists used their formula to calculate the maximum heat transfer between two nanometer-spaced metal plates, and found that the structures may be able to transmit orders of magnitude more heat than they currently achieve.

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can warm you up, to how much heat the Earth absorbs from the sun. But predicting such radiative heat transfer between extremely close objects has proven elusive for the past 50 years.

Now, MIT mathematicians have derived a formula for determining the maximum amount of heat exchanged between two objects separated by distances shorter than the width of a single hair. For any two objects situated mere nanometers apart, the formula can be used to calculate the most heat one body may transmit to another, based on two parameters: what the objects are made of, and how far apart they are.

The formula may help engineers identify optimal materials and designs for tuning small, intricately patterned devices, such as thermophotovoltaic surfaces that convert thermal energy into electrical energy, and cooling systems for computer chips.

As a demonstration, the scientists used their formula to calculate the maximum heat transfer between two nanometer-spaced metal plates, and found that the structures may be able to transmit orders of magnitude more heat than they currently achieve.

"This [formula] provides a target to say, 'this is what we should be looking for,' and compared to what we've seen so far in simple structures, there's orders of magnitude more room for improvement for this kind of heat transfer," says Owen Miller, a postdoc in the Department of Mathematics.

"If that's practically achievable, that could make a huge difference in, for example, thermophotovoltaics."

Miller and his colleagues Steven Johnson, professor of applied mathematics at MIT, and Alejandro Rodriguez, assistant professor of electrical engineering at Princeton University, have published their results in Physical Review Letters.

Small scale, big effect
Since the late 1800s, scientists have used the Stefan-Boltzmann law to calculate the maximum amount of heat one body can transmit to another. This maximum heat transfer depends only on the two bodies' temperatures and can be reached only when both bodies are extremely opaque, absorbing all the heat that is radiated on them - a theoretical notion known as the blackbody limit.

However, for objects smaller than the wavelength of heat - about 8 micrometers - scientists' established theories of heat transfer no longer apply. In fact, it appears that at the nanoscale, the amount of heat transmitted between objects actually exceeds that predicted by the blackbody limit, hundreds of times over.

As it turns out, when objects are extremely close together, heat flows not just as electromagnetic waves, but as evanescent waves - exponentially decaying waves that have little effect at the macroscale, as they typically die away before reaching another object. At the nanoscale, however, evanescent waves can play a large role in heat transfer, tunneling between objects and essentially releasing trapped energy in the form of extra heat.

Only in the last few years have Johnson and others at MIT, including Homer Reid, an applied mathematics instructor; Gang Chen, the Carl Richard Soderberg Professor of Power Engineering and head of the Department of Mechanical Engineering; and Mehran Kardar, the Francis Friedman Professor of Physics; begun to predict and quantify heat transfer at the nanoscale.

A surprisingly generalizable equation
Miller and his colleagues derived a formula for determining the maximum heat transfer between two extremely close objects. To do so, they used an existing model that describes radiative heat transfer as electrical currents flowing within two objects. Such currents arise from each object's fluctuating electric dipoles, or, its distribution of negative and positive charges.

Using this model as a framework, the team added two additional constraints: energy conservation, in which there is a limit to the amount of energy one body can absorb; and reciprocity, where each body may be treated as a source or receiver of heat. With this approach, the researchers derived a simple equation to calculate the maximum, or upper bound, of heat that two bodies may exchange at nanoscale separations.

The equation is surprisingly generalizable and can be applied to any pair of objects regardless of their shape. Scientists simply input two parameters into the equation: separation distance, and certain material properties of each object - namely, the maximum amount of electric current that can build up in a given material.

"Now we have a formula for the upper bound," Johnson says.

"Given the material and the separation you want, you'd just plug it into the formula and boom, you're done - it's very easy. Now you can go backwards and try to play with materials and optimize them."

Johnson says engineers can use the formula to identify the best possible combination and orientation of materials for optimizing heat transfer in nanodevices such as thermophotovoltaics, which involves etching surfaces with very fine, intricate patterns to improve their heat-absorbing properties.

The team has done some preliminary work in exploring heat transfer between various materials at the nanoscale. Taking about 20 different materials from the periodic table - mostly metals - Miller calculated the maximum heat transfer between pairs of them, at extremely small separations.

"This is still ongoing work, but aluminum looks like it has a lot of potential if it can be designed properly," Miller says.

"It has to be designed properly in order to achieve the limit, which is why people haven't seen large enhancements with such materials before, but this really opens up a new class of materials that may be used."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Navy researchers recruit luminescent nanoparticles to image brain function
Washington DC (SPX) Nov 26, 2015
Research biologists, chemists and theoreticians at the U.S. Naval Research Laboratory (NRL), are on pace to develop the next generation of functional materials that could enable the mapping of the complex neural connections in the brain. The ultimate goal is to better understand how the billions of neurons in the brain communicate with one another during normal brain function, or dysfunction, as ... read more


NANO TECH
Philippines goes supersonic again with S. Korean fighter jets

Boeing ends Globemaster production at Long Beach facility

Updated communications systems for China's Su-35 fighters

Philippine Air Force receiving South Korean FA-50 jets

NANO TECH
China launches Yaogan-29 remote sensing satellite

China's indigenous SatNav performing well after tests

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

NANO TECH
U.S. Air Force aiming to increase energy security through microgrids

Scientists design a QKD-based quantum private query with no failure

Hackers may hit home for the holidays

In fight on terror, encryption is double-edged sword

NANO TECH
Decarbonizing tourism: Would you pay US$11 for a carbon-free holiday?

Rich countries must not impose end to 'conventional energy': India PM

Commonwealth sets up $1 billion green finance facility

Fossil fuel divestment drive gathers momentum

NANO TECH
ORNL microscopy captures real-time view of evolving fuel cell catalysts

Physicists unravel behavior of strongly disordered superconductors

Identifying new sources of turbulence in spherical tokamaks

Energy from a fossil fuel without carbon dioxide

NANO TECH
BAE Systems, SAIC making amphibious armored vehicle prototypes

Raytheon moves forward with Multi-Object Kill Vehicle program

U.S. Air Force orders more JDAM bomb kits

U.K. awards Cook Defence Systems contract for armored vehicle tracks

NANO TECH
MIT mathematicians identify limits to heat flow at the nanoscale

Nanomagnets: Creating order out of chaos

Electric fields remove nanoparticles from blood with ease

Navy researchers recruit luminescent nanoparticles to image brain function

NANO TECH
New detector perfect for asteroid mining, planetary research

Human reflexes may keep legged robots from tripping

High-tech Barbie stokes privacy fears

A row-bot that loves dirty water









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.