Nano Technology News  
NANO TECH
Lehigh engineer discovers a high-speed nano-avalanche
by Staff Writers
Bethlehem PA (SPX) Aug 26, 2016


As part of his doctoral research, Charles McLaren discovered that applying a direct current field across glass reduced its melting temperature. In their experiments, they placed a block of glass between a cathode and anode, and then exerted steady pressure on the glass while gradually heating it. Image courtesy Douglas Benedict of Academic. For a larger version of this image please go here.

Charles McLaren, a doctoral student in materials science and engineering at Lehigh University, arrived last fall for his semester of research at the University of Marburg in Germany with his language skills significantly lagging behind his scientific prowess. "It was my first trip to Germany, and I barely spoke a word of German," he confessed.

The main purpose of McLaren's exchange study in Marburg was to learn more about a complex process involving transformations in glass that occur under intense electrical and thermal conditions. New understanding of these mechanisms could lead the way to more energy-efficient glass manufacturing, and even glass supercapacitors that leapfrog the performance of batteries now used for electric cars and solar energy.

"This technology is relevant to companies seeking the next wave of portable, reliable energy," said Himanshu Jain, McLaren's advisor and the T. L. Diamond Distinguished Chair in Materials Science and Engineering at Lehigh and director of its International Materials Institute for New Functionality in Glass. "A breakthrough in the use of glass for power storage could unleash a torrent of innovation in the transportation and energy sectors, and even support efforts to curb global warming."

As part of his doctoral research, McLaren discovered that applying a direct current field across glass reduced its melting temperature. In their experiments, they placed a block of glass between a cathode and anode, and then exerted steady pressure on the glass while gradually heating it. McLaren and Jain, together with colleagues at the University of Colorado, published their discovery in Applied Physics Letters.

The implications for the finding were intriguing. In addition to making glass formulation viable at lower temperatures and reducing energy needs, designers using electrical current in glass manufacturing would have a tool to make precise manipulations not possible with heat alone.

"You could make a mask for the glass, for example, and apply an electrical field on a micron scale," said Jain. "This would allow you to deform the glass with high precision, and soften it in a far more selective way than you could with heat, which gets distributed throughout the glass."

Though McLaren and Jain had isolated the phenomenon and determined how to dial up the variables for optimal results, they did not yet fully understand the mechanisms behind it. McLaren and Jain had been following the work of Dr. Bernard Roling at the University of Marburg, who had discovered some remarkable characteristics of glass using electro-thermal poling, a technique that employs both temperature manipulation and electrical current to create a charge in normally inert glass. The process imparts useful optical and even bioactive qualities to glass.

Roling invited McLaren to spend a semester at Marburg to analyze the behavior of glass under electro-thermal poling, to see if it would reveal more about the fundamental science underlying what McLaren and Jain had observed in their Lehigh lab.

A high-speed avalanche
McLaren's work in Marburg revealed a two-step process in which a thin sliver of the glass nearest the anode, called a depletion layer, becomes much more resistant to electrical current than the rest of the glass as alkali ions in the glass migrate away.

This is followed by a catastrophic change in the layer, known as dielectric breakdown, which dramatically increases its conductivity. McLaren likens the process of dielectric breakdown to a high-speed avalanche, and using spectroscopic analysis with electro-thermal poling as a way to see what is happening in slow motion.

"The results in Germany gave us a very good model for what is going on in the electric field induced softening that we did here. It told us about the start conditions for where dielectric breakdown can begin," explained McLaren.

"Charlie's work in Marburg has helped us see the kinetics of the process," Jain said. "We could see it happening abruptly in our experiments here at Lehigh, but we now have a way to separate out what occurs specifically with the depletion layer."

McLaren, Jain, Roling and his Marburg team members published their findings in the September 2016 issue of the Journal of Electrochemical Society.

"The Marburg trip was incredibly useful professionally and enlightening personally," said McLaren.

"Scientifically, it's always good to see your work from another vantage point, and see how other research groups interpret data or perform experiments. The group in Marburg was extremely hardworking, which I loved, and they were very supportive of each other. If someone submitted a paper, the whole group would have a barbecue to celebrate, and they always gave each other feedback on their work. Sometimes it was brutally honest - they didn't hold back - but they were things you needed to hear."

"Working in Marburg also showed me how to interact with a completely different group of people," he continued, "and you see differences in your own culture best when you have the chance to see other cultures close up. It's always a fresh perspective."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lehigh University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Silicon nanoparticles trained to juggle light
Moscow, Russia (SPX) Aug 26, 2016
A team of physicists from ITMO University (Saint Petersburg) and Moscow Institute of Physics and Technology (MIPT) has demonstrated the potential of silicon nanoparticles for effective non-linear light manipulation. Their work lays the foundation for the development of novel optical devices with a wide range of functionalities. These silicon nanoparticles based devices would allow to trans ... read more


NANO TECH
Australia to study drift of MH370 debris

Lockheed Martin gets max $10B contract for Air Force C-130J production

Power of Pink Provides NASA with Pressure Pictures

NASA-funded balloon mission begins fourth campaign

NANO TECH
China unveils Mars probe, rover for ambitious 2020 mission

China Ends Preparatory Work on Long March 5 Next-Generation Rocket Engine

China launches hi-res SAR imaging satellite

China launches world first quantum satellite

NANO TECH
Raytheon debuts Cyber and Electromagnetic Battle Management system

Software maverick McAfee warns China of hacking weakness

Hacking of DNC raises fears of cyber attack on US election

General Dynamics gets DARPA classified network contract

NANO TECH
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

NANO TECH
Lehigh engineer discovers a high-speed nano-avalanche

Silicon nanoparticles trained to juggle light

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Researchers resolve problem that has been holding back a tech revolution

NANO TECH
Lithuania buys German combat vehicles in major arms deal

Pelican BioThermal intros blood carrier for troops

Prison-made US combat helmets endangered soldiers: report

Lithuania receives surplus vehicles from the Netherlands

NANO TECH
Lehigh engineer discovers a high-speed nano-avalanche

Silicon nanoparticles trained to juggle light

Quantum dots with impermeable shell: A powerful tool for nanoengineering

Researchers resolve problem that has been holding back a tech revolution

NANO TECH
The first autonomous, entirely soft robot

Science set to upstage fiction with Fantastic Voyage

Natural scale caterpillar soft robot is powered and controlled with light

NASA Space Robotics Challenge Prepares Robots for the Journey to Mars









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.