Nano Technology News  
NANO TECH
Individual silver nanoparticles observed in real time
by Staff Writers
Bochum, Germany (SPX) Aug 03, 2018

file illustration only

Chemists at Ruhr-Universitat Bochum have developed a new method of observing the chemical reactions of individual silver nanoparticles, which only measure a thousandth of the thickness of a human hair, in real time.

The particles are used in medicine, food and sports items because they have an antibacterial and anti-inflammatory effect. However, how they react and degrade in ecological and biological systems is so far barely understood.

The team in the Research Group for Electrochemistry and Nanoscale Materials showed that the nanoparticles transform into poorly soluble silver chloride particles under certain conditions. The group led by Prof Dr Kristina Tschulik reports on the results in the Journal of the American Chemical Society from July 11, 2018.

Measurement in a natural environment
Even under well-defined laboratory conditions, current research has yielded different, sometimes contradictory, results on the reaction of silver nanoparticles. "In every batch of nanoparticles, the individual properties of the particles, such as size and shape, vary," says Kristina Tschulik, a member of the Cluster of Excellence Ruhr Explores Solvation.

"With previous procedures, a myriad of particles was generally investigated at the same time, meaning that the effects of these variations could not be recorded. Or the measurements took place in a high vacuum, not under natural conditions in an aqueous solution."

The team led by Kristina Tschulik thus developed a method that enables individual silver particles to be investigated in a natural environment. "Our aim is to be able to record the reactivity of individual particles," explains the researcher.

This requires a combination of electrochemical and spectroscopic methods. With optical and hyperspectral dark-field microscopy, , the group was able to observe individual nanoparticles as visible and coloured pixels. Using the change in the colour of the pixels, or more precisely their spectral information, the researchers were able to follow what was happening in an electrochemical experiment in real time.

Degradation of the particles slowed down
In the experiment, the team replicated the oxidation of silver in the presence of chloride ions, which often takes place in ecological and biological systems. "Until now, it was generally assumed that the silver particles dissolve in the form of silver ions," describes Kristina Tschulik. However, poorly soluble silver chloride was formed in the experiment - even if only a few chloride ions were present in the solution.

"This extends the lifespan of the nanoparticles to an extreme extent and their breakdown is slowed down in an unexpectedly drastic manner," summarises Tschulik. "This is equally important for bodies of water and for living beings because this mechanism could cause the heavy metal silver to accumulate locally, which can be toxic for many organisms."

Further development planned
The Bochum-based group now wants to further improve its technology for analysing individual nanoparticles in order to better understand the ageing mechanisms of such particles. The researchers thus want to obtain more information about the biocompatibility of the silver particles and the lifespan and ageing of catalytically active nanoparticles in the future.

Research paper


Related Links
Ruhr-University Bochum
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Researchers use nanotechnology to improve the accuracy of measuring devices
Moscow (SPX) Jul 30, 2018
Scientists from Higher school of economics and the Federal Scientific Research Centre 'Crystallography and Photonics' have synthesized multi-layered nanowires in order to study their magnetoresistance properties. Improving this effect will allow scientists to increase the accuracy of indicators of various measuring instruments, such as compasses and radiation monitors. The results of the study have been published in the paper 'Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis.' One o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
MIDAS cameras spot pair of lunar flashes caused by meteoroid impacts

Russia may use ISS Modules in Lunar Gateway Project

Israel plans its first moon launch in December

The toxic side of the Moon

NANO TECH
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

NANO TECH
Amnesty alleges "hostile" government behind spyware attack

Google developing censor-friendly search engine for China

China's former internet czar charged with taking bribes

Big tech firms agree on 'data portability' plan

NANO TECH
MIDAS cameras spot pair of lunar flashes caused by meteoroid impacts

Russia may use ISS Modules in Lunar Gateway Project

Israel plans its first moon launch in December

The toxic side of the Moon

NANO TECH
Researchers use nanotechnology to improve the accuracy of measuring devices

A new 'periodic table' for nanomaterials

Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale

NANO TECH
What is causing more extreme precipitation in the northeast?

Australia facing increased intense rain storms

Urban geophone array offers new look at northern Los Angeles basin

Satellite tracking reveals Philippine waters are important for endangered whale sharks

NANO TECH
Researchers use nanotechnology to improve the accuracy of measuring devices

A new 'periodic table' for nanomaterials

Physicists uncover why nanomaterial loses superconductivity

Squeezing light at the nanoscale

NANO TECH
Optical fibers that can feel the materials around them

US Army selects Lockheed Martin as integrated systems developer for autonomous convoy program

Cell-sized robots can sense their environment

If only AI had a brain









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.