. Nano Technology News .




NANO TECH
High-pressure science gets super-sized
by Staff Writers
Argonne IL (SPX) Oct 26, 2012


Schematic drawing of the double-stage diamond anvil cell assembly. The typical diameter of nano crystalline diamond semi-balls seen in the center of the drawing is 12-20 micrometers. The starting size of the sample is about three to four micrometers in diameter and about three micrometers thick. Image by GSECARS/Argonne National Laboratory.

The study of materials at extreme conditions took a giant leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid.

This discovery will allow scientists for the first time to reach static pressure levels exceeding four million atmospheres, a high-pressure environment where new unique compounds could be formed, materials change their chemical and physical properties and metals become insulators.

An international team of scientists using a new high-pressure anvil design and technique in conjunction with high-energy X-rays was able to create 640 gigapascals, or GPas, of pressure. This is 50 percent more pressure than previously demonstrated and 150 percent more pressure than accessible by typical high-pressure experiments.

Pressures at this level have vast ramifications for earth science, cosmology, chemistry, shock physics and material science. Static pressure of 640 GPa is six million times the pressure of the air at the Earth's surface and more than one and a half times the pressure at the center of the Earth. Research at these pressures could lead to new revelations about how the Earth evolved and how iron, the most abundant material inside the Earth's core, functions at extremes.

This new super-high-pressure capability was developed by scientists from the University of Bayreuth in Germany, the University of Chicago and the University of Antwerp in Belgium.

The physical properties of tiny materials (less than one micron thick) were investigated in situ at ultra-high pressures with high-resolution micro X-ray diffraction techniques at the GeoSoilEnviro Consortium for Advanced Radiation Sources, or GSECARS, a beamline operated by the University of Chicago at the U.S. Department of Energy's Advanced Photon Source at Argonne National Laboratory.

Details appear today in the article "Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6Mbar" in the journal Nature Communications.

"The ability to do static experiments at this pressure range has only been theorized about," said Vitali Prakapenka, an author on the paper and scientist at the Center for Advanced Radiation Sources at the University of Chicago.

"We aren't stopping here. We expect to increase the accessible pressure range close to one terapascal, or 10 megabars, to probe materials at conditions corresponding to the core of gas giant planets, such as Uranus and Neptune, which have pressures of about seven megabars."

Previous studies have been limited because the only way to reach such high pressures was to use dynamic compression (shockwaves), which also generate high temperatures and only nanoseconds of observation time. The discovery of a way to apply static pressures allows experimental studies of physical and chemical properties of materials in situ at high pressures with a number of various techniques to test long-held theories, including metallization of hydrogen.

"This new technique could revolutionize the study of high-pressure science," said Leonid Dubrovinsky, one of the paper's authors and a scientist at the University of Bayreuth.

Since the late 1950s, scientists have been using diamond anvil cells to generate extreme pressures to test the durability of materials, to create new properties of materials, such as superconductivity, and to replicate high-pressure conditions of planetary interiors.

Yet, until now, scientists have struggled to reach pressures of the Earth's inner core, which is 320 to 360 GPa. Only a handful of experiments have been reported at these pressures, and the maximum achieved pressure had been about 420 GPa.

Scientists were able to triple the normal experiment pressure level by adding a second set of micro-anvils (10-20 microns in diameter) between two gem-quality single-crystal diamond anvils of about one-quarter of a carat each. This secondary anvil is made of superhard nanocrystalline diamond semi-balls fabricated from glassy carbon using newly developed technique in a large volume press at high pressure and temperature.

"The nanocrystalline diamond balls have very high yield strength and are less compressible and less brittle than single-crystal diamonds," said Natalia Dubrovinskaia, one of the paper's authors and a scientist at the University of Bayreuth. "That allows us to drastically extend the achievable pressure range using micro-balls as second stage anvils."

.


Related Links
Argonne National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Lockheed Martin Advanced Technology Center Develops Revolutionary Nanotechnology Copper Solder
Palo Alto, CA (SPX) Oct 26, 2012
Scientists in the Advanced Materials and Nanosystems directorate at the Lockheed Martin Space Systems Advanced Technology Center (ATC) in Palo Alto have developed a revolutionary nanotechnology copper-based electrical interconnect material, or solder, that can be processed around 200 degrees C. Once fully optimized, the CuantumFuse solder material is expected to produce joints with up to ... read more


NANO TECH
China Southern 3Q profits tumble 29 percent

'Frankenstorm' disrupts US-bound flights from Britain

Hawker signs New Zeland King Air deal

Iraq to pay $500 mn airline settlement by mid-2013: Kuwait

NANO TECH
Patience for Tiangong

China launches civilian technology satellites

ChangE-2 Mission To Lagrange L2 Point

Meeting of heads of ESA and China Manned Space Agency

NANO TECH
Israel, U.S. brace for cyber assaults

Auditor warns Canada lagging on cyber security

Raytheon acquires technology development firm Teligy

Kosovo group claims hack of US weather service

NANO TECH
Global headwinds trouble India's Suzlon

Americans use more efficient and renewable energy technologies

China energy giant Sinopec sees Q3 net profit fall

Speed limits on cargo ships could reduce their pollutants by more than half

NANO TECH
Obama shows support for natural gas

Utah oil sands projects gets green light

Oil prices rise on US growth, Hurricane Sandy

Crude down in Asia as hurricane threatens US

NANO TECH
Raytheon enhances Common Sensor Payload capabilities

Raytheon, Motion Reality demonstrate immersive tactical training systems

Fire, explosions at Khartoum military factory: witnesses

Raytheon's BattleGuard demonstrates accuracy of target identification and engagement

NANO TECH
Strengthening fragile forests of carbon nanotubes for new MEMS applications

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator

Tiny pores in graphene could give rise to membranes

Nanotechnology helps scientists keep silver shiny

NANO TECH
Training Your Robot the PaR-PaR Way

Northrop Grumman Remotec to Begin Delivering Titus Robot in December

Japan robot suit offers hope for nuclear work

NASA's Ironman-Like Exoskeleton Could Give Astronauts, Paraplegics Improved Mobility and Strength




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement