. Nano Technology News .




NANO TECH
Friction in the nano-world
by Staff Writers
Garching, Germany (SPX) May 22, 2013


A polymer chain tied to the tip of an atomic force microscope - Image: B. Balzer/TUM.

Whether in vehicle transmissions, hip replacements, or tiny sensors for triggering airbags: The respective components must slide against each other with minimum friction to prevent loss of energy and material wear.

Investigating the friction behavior of nanosystems, scientists from the Technische Universitaet Muenchen (TUM) have discovered a previously unknown type of friction that sheds new light on some previously unexplainable phenomena.

Friction is an omnipresent but often annoying physical phanomenon: It causes wear and energy loss in machines as well as in our joints. In search of low-friction components for ever smaller components, a team of physicists led by the professors Thorsten Hugel and Alexander Holleitner now discovered a previously unknown type of friction that they call "desorption stick."

The researchers examined how and why single polymer molecules in various solvents slide over or stick to certain surfaces. Their goal was to understand the basic laws of physics at the molecular scale in order to develop targeted anti-friction surfaces and suitable lubricants.

For their studies the scientists attached the end of a polymer molecule to the nanometer-fine tip of a highly sensitive atomic force microscope (AFM). While they pulled the polymer molecule over test surfaces, the AFM measured the resulting forces, from which the researchers could directly deduce the behavior of the polymer coil.

New friction mechanism discovered
Besides the two expected friction mechanisms such as sticking and sliding the researchers detected a third one for certain combinations of polymer, solvent and surface.

"Although the polymer sticks to the surface, the polymer strand can be pulled from its coiled conformation into the surrounding solution without significant force to be exerted," experimental physicist Thorsten Hugel describes this behavior. "The cause is probably a very low internal friction within the polymer coil."

The key is the solvent
Surprisingly, desorption stick depends neither on the speed of movement nor on the support surface or adhesive strength of the polymer. Instead, the chemical nature of the surface and the quality of the solvent are decisive. For example, hydrophobic polystyrene exhibits pure sliding behavior when dissolved in chloroform. In water, however, it shows desorption stick.

"The understanding gained by our measurement of single-molecule friction opens up new ways to minimize friction," says Alexander Holleitner. "In the future, with targeted preparation of polymers, new surfaces could be developed specifically for the nano- and micrometer range."

"Nanoscale Friction Mechanisms at Solid-Liquid Interfaces" Bizan N. Balzer, Dr. Markus Gallei, Moritz V. Hauf, Markus Stallhofer, Lorenz Wiegleb, ?Prof. Dr. Alexander Holleitner, Prof. Dr. Matthias Rehahn and Prof. Dr. Thorsten Hugel, Angewandte Chemie, Int. Ed., early view, 7. Mai 2013; DOI: 10.1002/anie.201301255?

.


Related Links
Technische Universitaet Muenchen
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
The science behind a self-assembled nano-carbon helix
Vienna, Austria (SPX) May 20, 2013
Nanotechnology draws on the fabrication of nanostructures. Scientists have now succeeded in growing a unique carbon structure at the nanoscale that resembles a tiny twirled moustache. Their method might lead the way to the formation of more complex nano-networks. Researchers of the Electronic Properties of Materials Group at the Faculty of Physics (University of Vienna) and their internati ... read more


NANO TECH
Frigid Heat: How Ice can Menace a Hot Engine

China 'will not accept' carbon tax on EU flights: report

F-35A Completes High Angle Of Attack Testing

India commissions first MiG-29K fighters

NANO TECH
China launches communications satellite

On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

NANO TECH
Four Lulzsec hackers sentenced to jail in Britain

New Software Spots, Isolates Cyber-Attacks to Protect Networked Control Systems

Beefing Up Cyber Protections for U.S. Critical Infrastructure

Software can detect cyberattacks on infrastructure control systems

NANO TECH
New report identifies strategies to achieve net-zero energy homes

Finnish researchers to provide solutions for energy-efficient repairs in residential districts in Moscow

Paraguay ups stakes in electricity row with Brazil, Argentina

EU says emissions down, but pollution scheme falters

NANO TECH
IMF urges Iraq to build fiscal buffers

Philippines protests to China over 'illegal' sea presence

Oettinger: EU studying 'fracking' as it seeks to cut energy prices

Alaskan village loses court fight against big oil

NANO TECH
China police billions spell profit opportunity

Lockheed Martin's JASSM Extended Range Completes IOT and E Flight Testing

Outside View: Whetting the Spearhead

Brazil picks suppliers for electronic border fence

NANO TECH
Friction in the nano-world

Kinks and curves at the nanoscale

The science behind a self-assembled nano-carbon helix

UC Riverside scientists discovering new uses for tiny carbon nanotubes

NANO TECH
Principles of locomotion in confined spaces could help robot teams work underground

Robots learn to take a proper handoff by following digitized human examples

Wayne State University researcher's technique helps robotic vehicles find their way, help humans

MakerBot and Robohand




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement