. Nano Technology News .




.
NANO TECH
Ferroelectricity on the Nanoscale
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Jul 11, 2012

Atomic-resolution images of germanium telluride nanoparticles from Berkeley Lab's TEAM I electron microscope, and electron holographic images of barium titanate nanoparticles (below) from BNL yielded the first detailed experimental information on ferroelectric order at the nanoscale.

Promising news for those who relish the prospects of a one-inch chip storing multiple terabytes of data, some clarity has been brought to the here-to-fore confusing physics of ferroelectric nanomaterials. A multi-institutional team of researchers, led by scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has provided the first atomic-scale insights into the ferroelectric properties of nanocrystals.

This information will be critical for development of the next generation of nonvolatile data storage devices.

Working with the world's most powerful transmission electron microscope, the researchers mapped the ferroelectric structural distortions in nanocrystals of germanium telluride, a semiconductor, and barium titanate, an insulator. This data was then combined with data from electron holographic polarization imaging to yield detailed information on the polarization structures and scaling limits of ferroelectric order on the nanoscale.

"As we scale down our device technology from the microscale to the nanoscale, we need a better understanding of how critical material properties, such as ferroelectric behavior, are impacted," says Paul Alivisatos, director of Berkeley Lab and one of the principal investigators in this research. "Our results provide a pathway to unraveling the fundamental physics of nanoscale ferroelectricity at the smallest possible size scales."

Alivisatos, who is also the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley, is a corresponding author of a paper describing this work in the journal Nature Materials titled "Ferroelectric order in individual nanometrescale Crystals."

The other corresponding author is Ramamoorthy Ramesh, a senior scientist with Berkeley Lab's Materials Sciences Division and the Plato Malozemoff Professor of Materials Science and Physics for UC Berkeley.

Ferroelectricity is the property by which materials can be electrically polarized, meaning they will be oriented in favor of either a positive or negative electrical charge. This polarization can be flipped with the application of an external electrical field, a property that could be exploited for nonvolatile data storage, similar to the use of ferromagnetic materials today but using much smaller, far more densely packed devices.

"Although much progress has been made towards understanding nanoscale photophysical magnetic and other functional properties, understanding the basic physics of ferroelectric nanomaterials remains far less advanced," says co-principal investigator Ramesh, who attributes contradicting reports on nanoscale ferroelectricity in part to the lack of high-quality, nanocrystals of ferroelectric materials that feature well-defined sizes, shapes and surfaces.

"Another problem has been the reliance on ensemble measurements rather than single particle techniques," he says. "Statistical-average measurement techniques tend to obscure the physical mechanisms responsible for profound changes in ferroelectric behavior within individual nanocrystals."

The Berkeley Lab-led research team was able to map ferroelectric structural distortions within individual nanocrystals thanks to the unprecedented capabilities of TEAM I, which is housed at Berkeley Lab's National Center for Electron Microscopy (NCEM). TEAM stands for "Transmission Electron Aberration-corrected Microscope." TEAM I can resolve images of structures with dimensions as small as one half-angstrom - less than the diameter of a single hydrogen atom.

The maps produced at TEAM I of ferroelectric distortion patterns within the highly conducting germanium telluride nanocrystals were then compared with electron holography studies of insulating nanocubes of barium titanate, which were carried out by collaborators at Brookhaven National Laboratory (BNL).

"Electron holography is an interferometry technique using coherent electron waves," said BNL physicist and co-author of the Nature Materials paper Myung-Geun Han. "Firing focused electron waves through the ferroelectric sample creates what's called a phase-shift, or an interference pattern that reveals details of the targeted structure. This produces an electron hologram, which we can use to directly see local electric fields of individual ferroelectric nanoparticles."

These combined studies enabled the independent examination of depolarizing field and surface structure influences and thereby enabled the research team to identify the fundamental factors governing the nature of the ferroelectric polarized state at finite dimensions. The results indicate that a monodomain ferroelectric state with linearly ordered polarization remains stable in these nanocrystals down to dimensions of less than 10 nanometers.

Also, room-temperature polarization flipping was demonstrated down to dimensions of about five nanometers. Below this threshold, ferroelectric behavior disappeared. This indicates that five nanometers is likely a size limit for data storage applications, the authors state.

"We also showed that ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions," Ramesh says.

"Taken together, our results provide a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits."

Also co-authoring the Nature Materials paper in addition to Alivisatos, Ramesh and Han were Mark Polking, Amin Yourdkhani, Valeri Petkov, Christian Kisielowski, Vyacheslav Volkov, Yimei Zhu and Gabriel Caruntu.

Related Links
Berkeley National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Tiny bubbles snap carbon nanotubes like twigs
Houston TX (SPX) Jul 11, 2012
What's 100 times stronger than steel, weighs one-sixth as much and can be snapped like a twig by a tiny air bubble? The answer is a carbon nanotube - and a new study by Rice University scientists details exactly how the much-studied nanomaterials snap when subjected to ultrasonic vibrations in a liquid. "We find that the old saying 'I will break but not bend' does not hold at the micro- and nano ... read more


NANO TECH
Brazil jet bid extended 6 months

Boeing predicts $4.5 trillion market for 34,000 new airplanes

Poland orders more C295s, produces helos

EADS Group To Present New Technologies At Farnborough Airshow 2012

NANO TECH
China's manned spacecraft in final preparations for mid-June launch

Shenzhou mission sparks 'science fever'

China Beats Russia on Space Launches

China open to cooperation

NANO TECH
Firms told to own up to cybercrime attacks

Twitter says government requests rising in 2012

Wickr gives iPhone messages military-grade protection

US court orders Twitter to hand over Occupy tweets

NANO TECH
Extreme weather conditions cost EU's transport system at least 15 billion euro annually

Europe grid upgrades pegged at $128B

Clean cookstoves unaffordable to Bangladeshi women

Swiss firm wins $120m power station contract in Iraq

NANO TECH
New method knocks out stubborn electron problem

Quantum computing, no cooling required

Enbridge Fined Over Kalamazoo River Tar Sands Pipeline Spil

Nature: Molecule Changes Magnetism and Conductance

NANO TECH
Boeing Completes Wind Tunnel Tests on Silent Eagle Conformal Weapons Bay

Taiwan, US to sign fighter radar contract: report

Portuguese armor vehicle to test in Brazil

Northrop Grumman Demonstrates Joint Threat Emitter for NAS Whidbey Island

NANO TECH
Ferroelectricity on the Nanoscale

Unprecedented subatomic details of exotic ferroelectric nanomaterials

Tiny bubbles snap carbon nanotubes like twigs

Nanodiamonds cut through dirt to bring back 'bling' to low temperature laundry

NANO TECH
Researchers Develop an Artificial Cerebellum than Enables Robotic Human-like Object Handling

Biomechanical legs are a giant step for robot-kind

Most accurate robotic legs mimic human walking gait

Muscle-like action allows camera to mimic human eye movement


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement