. Nano Technology News .




NANO TECH
Densest array of carbon nanotubes grown to date
by Staff Writers
Washington DC (SPX) Sep 24, 2013


Scanning electron microscope images are of CNT forests with low and high density. Credit: Hisashi Sugime/U.Cambridge.

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density of tiny graphene cylinders needed for many microelectronics applications would be difficult.

Now a team from Cambridge University in England has devised a simple technique to increase the density of nanotube forests grown on conductive supports about five times over previous methods.

The high density nanotubes might one day replace some metal electronic components, leading to faster devices. The researchers report their finding in the journal Applied Physics Letters, which is produced by AIP Publishing.

"The high density aspect is often overlooked in many carbon nanotube growth processes, and is an unusual feature of our approach," says John Robertson, a professor in the electronic devices and materials group in the department of engineering at Cambridge.

High-density forests are necessary for certain applications of carbon nanotubes, like electronic interconnects and thermal interface materials, he says.

Robertson and his colleagues grew carbon nanotubes on a conductive copper surface that was coated with co-catalysts cobalt and molybdenum. In a novel approach, the researchers grew at lower temperature than is typical which is applicable in the semiconductor industry.

When the interaction of metals was analyzed by X-ray photoelectron spectroscopy, it revealed the creation of a more supportive substrate for the forests to root in. The subsequent nanotube growth exhibited the highest mass density reported so far.

"In microelectronics, this approach to growing high-density carbon nanotube forests on conductors can potentially replace and outperform the current copper-based interconnects in a future generation of devices," says Cambridge researcher Hisashi Sugime.

In the future, more robust carbon nanotube forests may also help improve thermal interface materials, battery electrodes, and supercapacitors.

The article, "Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports" by Hisashi Sugime, Santiago Esconjauregui, Junwei Yang, Lorenzo D'arsie, Rachel A. Oliver, Sunil Bhardwaj, Cinzia Cepek and John Robertson appears in the journal Applied Physics Letters.

.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Container's material properties affect the viscosity of water at the nanoscale
Atlanta GA (SPX) Sep 24, 2013
Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic. But at nanometer-size scales for water and potentially other fluids, whether the container is made of glass or plastic does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as h ... read more


NANO TECH
US F-35 jet plagued by shoddy quality control: audit

Japan, Belgium seek FMS deals

US to upgrade Japan's early warning radar aircraft: Pentagon

Indian navy gets its first Hawk trainer jets

NANO TECH
Chinese VP stresses peaceful use of space

China's space station to open for foreign peers

Last Days for Tiangong

China civilian technology satellites put into use

NANO TECH
Britain recruiting cyber-warriors

Japan, US to discuss strengthening cyber-security: reports

Researchers warn of 'hit and run' cyber attackers

White House asks FCC to make cellphone unlocking legal

NANO TECH
Myanmar's energy sector boosted by World Bank investment

Nigeria signs $1.3 bn power plant deal with China

ASEAN region has potential for 70 percent green energy

Clean energy least costly to power America's electricity needs

NANO TECH
Fusion, anyone?

Lawmaker charged over British fracking site protest

Israel sees Turkey-Cyprus settlement as key to gas exports

Rainbow Warrior captain among activists held in Russia

NANO TECH
Extended Range Munition completes first Guide to Hit test series

LockMart Contracts To Transition Long Range Land Attack Projectile To Production

Chile moves to get rid of cluster munitions

US to sign global treaty on conventional arms trade

NANO TECH
Densest array of carbon nanotubes grown to date

Nanoscale neuronal activity measured for the first time

Container's material properties affect the viscosity of water at the nanoscale

Molecules pass through nanotubes at size-dependent speeds

NANO TECH
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement