Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Decoding the role of water in gold nanocatalysis
by Staff Writers
Houston TX (SPX) Sep 12, 2014


This image shows schematic representation of the lowest energy pathway for CO oxidation on gold-titania catalysts. The water layer on the titania support extends the reaction zone on the gold nanocluster and provides protons that assist in the oxygen dissociation step. Image courtesy Hieu Doan, University of Houston.

Researchers from the University of Houston and Trinity University have for the first time provided direct evidence of a water-mediated reaction mechanism for the catalytic oxidation of carbon monoxide.

The work used gold nanoparticles and titanium dioxide as a catalyst to speed the process and determined that water serves as a co-catalyst for the reaction that transforms carbon monoxide into carbon dioxide. While researchers have worked with carbon monoxide oxidation using gold catalysts for years and have realized that water can change the reaction, none have previously been able to fully explain why it worked.

The work is described in the journal Science and online here.

"We can say with a high degree of certainty that we now understand the role of each of the components and what they do during this catalytic reaction," said Lars Grabow, assistant professor of chemical and biomolecular engineering at the University of Houston. He and Hieu Doan, a Ph.D. student at the UH Cullen College of Engineering, developed computational simulations to support experiments run by Trinity University chemists Bert Chandler, Christopher Pursell and Johnny Saavedra.

Chandler, professor of chemistry at Trinity, said the work was a true collaboration.

"It took all of us to make it happen," he said. "What we did is to bridge the gap between surface science and computational people. We knew water helped the reaction but didn't fully understand its role. Now we know that water is a co-catalyst for this reaction."

When used in jewelry, gold is prized for its nonreactive properties - it doesn't rust or tarnish when exposed to air or water. And researchers have long known that, despite its reputation as an inert metal, gold nanoparticles can work as a catalyst to speed chemical reaction.

But nobody knew exactly why it worked. Water turned out to be key, even when it isn't explicitly added to the process, Grabow said.

Trace amounts of water drawn from the air drove the reactions on the surface of the gold catalysts, he said.

During the experiments and computational study, the researchers looked at how water, surface hydroxyls and the metal-support interface interacted during carbon monoxide oxidation over a gold-titania catalyst.

"In all cases, an essentially barrier-free proton transfer lowered the overall energy of the system, generating H2O2 or OOH. Once OOH formed, it migrated along the Au particle, allowing atoms near, but not strictly at, the metal-support interface to participate in the reaction," they wrote to describe their findings, referring to the generation of hydrogen peroxide or hydroperoxyl and hydroperoxyl's migration along the gold particles.

Essentially, they found that protons from a thin layer of water stretching across the surface of the catalyst detach from the water molecules and attach to oxygen molecules, briefly moving onto the surface of the catalyst to spur the reaction before returning to the water layer.

Previous models typically focused on individual components of the reaction, Grabow said, making this project the first to pull all of the facets together in a single model that fully supports the Trinity chemists' experimental observations. Chandler said the work could provide a way to produce clean hydrogen from petroleum and natural gas.

.


Related Links
University of Houston
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Peptoid Nanosheets at the Oil/Water Interface
Berkeley CA (SPX) Sep 12, 2014
From the people who brought us peptoid nanosheets that form at the interface between air and water, now come peptoid nanosheets that form at the interface between oil and water. Scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed peptoid nanosheets - two-dimensional biomimetic materials with customizable properties - that self-a ... read more


NANO TECH
IBC Engineered Materials to Supply BeralCast Castings for F-35

Congress notified of possible helo sale to Brazil

Flight MH17 hit by numerous 'high energy objects'

Singapore has full fleet of Alenia Aermacchi trainer planes

NANO TECH
China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

China to launch second space lab in 2016: official

China's Space Station is Still On Track

NANO TECH
US threatened Yahoo with huge fine over surveillance

Turing biopic wins Toronto film festival top prize

Lockheed Martin to help in Aussie data processing system revamp

Bush-era memos: president can wiretap Americans at all times

NANO TECH
IRENA: Outdated thinking curbing green energy momentum

Zimbabwe launches $500-mln power units to ease energy woes

Existing power plants will spew 300 billion more tons of carbon dioxide during use

Yale Journal Explores Advances In Sustainable Manufacturing

NANO TECH
Phosphorus a promising semiconductor

Researchers Part Water

NREL Updates Cetane Data Energy Efficient Fuel and Engine Development

Light detector to revolutionise night vision technology

NANO TECH
BAE Systems Hagglund delivers combat vehicle to Norway

Thales-operated munition plants to continue Australian military production

Additional live-fire target systems ordered by U.S. Army

Lockheed opens center for optical payload development in California

NANO TECH
Decoding the role of water in gold nanocatalysis

Magnetic nanocubes self-assemble into helical superstructures

Peptoid Nanosheets at the Oil/Water Interface

Nanotechnology aids in cooling electrons without external sources

NANO TECH
Cutting the cord on soft robots

iRobot supplying its PackBots to Canada

Watch MIT's Atlas robot carry heavy objects

DARPA issues RFI for robotic space services for satellites




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.