|
. | . |
|
by Staff Writers Berlin, Germany (SPX) Feb 03, 2015
"With the help of magnetic fields, we can selectively create the magnetic nanovortices, then give them a shove so that they are deflected out of their equilibrium position", explains Dr. Felix Buttner, who pursued this research as his Ph.D. project. "We were then able to very precisely track how these skyrmions, as these special nanovortices are called, return to their rest position", Buttner explains further. The vortices are formed in a magnetic system of thin film multilayers, where alternating layers composed of a cobalt-boron alloy and platinum are stacked on one another. Each individual layer is less than one nanometre thick. This arrangement allows the researchers to very specifically tailor the magnetic properties of the system, enabling the skyrmions to exist. The diameter of these magnetic vortices is no more than 100 nanometres. That is about 1/1000th of the diameter of a human hair. Special techniques enabled the researchers to track the movements of the skyrmions with a precision of better than a few nanometres at individual time steps less than one nanosecond apart. This was facilitated by holographic recording techniques using intense X-ray pulses of the BESSY II synchrotron source at Helmholtz-Zentrum Berlin (HZB). These holographic recording techniques have been developed and improved by the TU Berlin "Nanometre Optics and X-ray Scattering" research group in conjunction with HZB over a number of years, a joint effort directed by Prof. Stefan Eisebitt from TU Berlin. What Buttner and his co-workers observed in the X-ray holograms was remarkable: "Similar to bumping a spinning top, the nanovortex does not move in a straight line, but instead along a spiral trajectory", explains Buttner. "By comparing our measurements with model calculations, we were able to determine that this spiral-shaped movement can only be explained if the skyrmion has mass." This is an important discovery, since the nanovortices observed here represent only one special type of skyrmions found in nature. "In the past, skyrmions were often described as being massless", explains Christoforos Moutafis from the Paul Scherrer Institute, who has long been involved with the theoretical description of these kinds of structures. Now, the application of the concept of mass to such particles, as established by this work, will also contribute to the understanding of other types of skyrmions, as the researchers point out in the renowned scientific journal Nature Physics. There could also be tangible applications for these magnetic nanovortices within thin magnetic layers - they are already being discussed today as an alternative information medium in data processing and storage. Researchers suspect that due to their "skyrmion property", such bits (units of information) can be stored more densely and transferred more reliably than at present. The new insights into skyrmion behaviour might contribute to realising these kinds of novel concepts for information processing.
Related Links Helmholtz-Zentrum Berlin fur Materialien und Energie Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |