. Nano Technology News .




NANO TECH
Controlling heat flow through a nanostructure
by Staff Writers
Cambridge, MA (SPX) Nov 23, 2012


The study involves a nanostructured material called a superlattice.

Thermoelectric devices, which can harness temperature differences to produce electricity, might be made more efficient thanks to new research on heat propagation through structures called superlattices. The new findings show, unexpectedly, that heat can travel like waves, rather than particles, through these nanostructures: materials made up of layers only a few billionths of a meter in thickness.

Heat - the vibration of atoms and molecules in a material - usually travels in a "random walk," which is difficult to control. The new observations show a very different pattern, called coherent flow, which is more like ripples that move across a pond in an orderly way.

This opens the possibility of new materials in which the flow of heat could be precisely tailored - materials that could have important applications. For example, such research might lead to new ways of shedding the heat generated by electronic devices and semiconductor lasers, which hampers performance and can even destroy the devices.

The new work, by graduate student Maria Luckyanova, postdoc Jivtesh Garg and professor Gang Chen, all of MIT's Department of Mechanical Engineering - along with other students and professors at MIT, Boston University, the California Institute of Technology and Boston College - is reported this week in the journal Science.

The study involves a nanostructured material called a superlattice: in this case, a stack of alternating thin layers of gallium arsenide and aluminum arsenide, each deposited in turn through a process called metal-organic chemical vapor deposition.

Chemicals containing these elements are vaporized in a vacuum, and then deposited on a surface, their thicknesses precisely controlled through the duration of the deposition process. The resulting layers were just 12 nanometers thick - about the thickness of a DNA molecule - and the entire structures ranged in thickness from 24 to 216 nanometers.

Researchers had previously believed that even though such layers could be atomically perfect, there would still be enough roughness at the interfaces between the layers to scatter heat-transporting quasi-particles, called phonons, as they moved through the superlattice.

In a material with many layers, such scattering effects would accumulate, it was thought, and "destroy the wave effect" of the phonons, says Chen, the Carl Richard Soderberg Professor of Power Engineering. But this assumption had never been proved, so he and his colleagues decided to re-examine the process, he says.

Indeed, experiments by Luckyanova and computer simulations by Garg showed that while such phase-randomizing scattering takes place among high-frequency phonons, wave effects were preserved among low-frequency phonons. Chen says he was very surprised when Luckyanova came back with the first experimental data to show "that coherent conduction of heat is really happening."

Understanding the factors that control this coherence could, in turn, lead to better ways of breaking that coherence and reducing the conduction of heat, Chen says. This would be desirable in thermoelectric devices to harness unused heat energy in everything from powerplants to electronics. Such applications require materials that conduct electricity very well but conduct heat very poorly.

The work could also improve the shedding of heat, such as for the cooling of computer chips. The ability to focus and direct heat flow could lead to better thermal management for such devices. Chen says researchers don't yet know how to exert such precise control, but the new understanding could help. Understanding this wave-based mechanism "gives you more ways to manipulate the transport" of heat, he says.

The two materials used in this experiment have very similar properties, Luckyanova says, and conduct electricity very well. But by controlling the thickness and spacing of the layers, she says, "we believe we can manipulate the thermal transport," producing the kind of insulating effect needed for thermoelectric devices.

The role of interfaces between the layers of a material "is something that was not really understood," Garg says. Previous simulations had failed to include the effects of variation in surface texture on the process, he says, but "I realized there was a way to simulate the role of roughness" on the way phonons moved through the stack of layers.

The new work not only provides the possibility of controlling the flow of heat (mostly carried by phonons with short wavelengths) but also for controlling the movement of sound waves (primarily carried by longer-wavelength phonons). "It's really a sort of fundamental understanding," Chen says.

The insights that made the work possible arose in large part through interactions between researchers in different disciplines, facilitated through the Solid State Solar-Thermal Energy Conversion Center, an Energy Frontier Center funded by the U.S. Department of Energy, which holds regular cross-disciplinary meetings at MIT.

"Those meetings provided long, fruitful discussions that really strengthened the paper," Luckyanova says. The variety of people in the group "really encouraged us to attack this problem from all sides."

The paper's co-authors include Mildred Dresselhaus, Institute Professor Emerita; Eugene Fitzgerald, the Merton C. Flemings SMA Professor of Materials Science and Engineering; and several others.

.


Related Links
Massachusetts Institute of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene
Oak Ridge TN (SPX) Nov 23, 2012
Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is providing unprecedented views of the individual atoms in graphene, offering scientists a chance to unlock the material's full potential for uses from engine combustion to consumer electronics. Graphene crystals were first isolated in 2004. They are two-dimensional (one-atom in thickness), harder than diamond ... read more


NANO TECH
French police fire tear gas anew on airport protest

Owls' ability to fly in acoustic stealth provides clues to mitigating conventional aircraft noise

China Eastern Airlines to buy 60 A320 aircraft

Mosquitos fail at flight in heavy fog

NANO TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

NANO TECH
Israel facing 'millions' of cyber-attacks over Gaza

White House mulls move as cybersecurity bill fails

Tech star turned adventurer now in murder plot

McAfee stays one step ahead of Belize police

NANO TECH
Official "Green Tuesday" Launch November 27, 2012

A low-carbon Finland is a great challenge, but an achievable one

Poland to invest 24 billion euros in energy by 2020

Analyzing the cost of federal and other renewable energy subsidies in Texas

NANO TECH
Turks hike energy stake in Iraqi Kurdistan

Turn to gas to fight climate change, Qatar says at UN talks

New energy technologies promise brighter future

Philippine minister tells cadets 'protect what is ours'

NANO TECH
Britain defends shooting pigs for army medic training

Stone-tipped weapons older than thought

Australia rolls out Thales desktop system

Northrop Grumman Begins Full-Rate Production of LITENING SE Targeting Pods for USAF

NANO TECH
King's College London finds rainbows on nanoscale

Optical microscopes lend a hand to graphene research

ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

Controlling heat flow through a nanostructure

NANO TECH
Robotic Fish Research Swims into New Ethorobotics Waters

Toshiba unveils dog-like robot for Fukushima plant

Ban 'killer robots,' rights group urges

Britain says no calculators for math tests




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement