Subscribe free to our newsletters via your
. Nano Technology News .




NANO TECH
Camera for the nano-cosmos
by Staff Writers
Dresden, Germany (SPX) Aug 14, 2015


Studying a known thin-layer sample using the novel nanoscope. Laser pulses excite the electrons in the bright stripes, whereby the otherwise transparent sample at these locations becomes reflexive. Image courtesy TU Dresden. For a larger version of this image please go here.

To gain even deeper insights into the smallest of worlds, the thresholds of microscopy must be expanded further. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the TU Dresden, in cooperation with the Freie Universitat Berlin, have succeeded in combining two established measurement techniques for the first time: near-field optical microscopy and ultra-fast spectroscopy.

Computer-assisted technology developed especially for this purpose combines the advantages of both methods and suppresses unwanted noise. This makes highly precise filming of dynamic processes at the nanometer scale possible. The results were recently published in the research journal Scientific Reports (DOI: 10.1038/srep12582).

Many important but complex processes in the natural and life sciences, for example, photosynthesis or high-temperature superconductivity, have yet to be understood. On the one hand, this is due to the fact that such processes take place on a scale of a millionth of a millimeter (nanometer) and therefore cannot be observed by conventional optical microscopic imaging.

On the other hand, researchers must be able to precisely observe very rapid changes in individual stages to better understand the highly complex dynamics. The development of high-resolution temporal and spatial technologies has therefore been promoted for decades.

The new camera from Dresden combines the advantages of two worlds: microscopy and ultra-fast spectroscopy. It enables unaltered optical measurements of extremely small, dynamic changes in biological, chemical or physical processes. The instrument is compact in size and can be used for spectroscopic studies in a large area of the electromagnetic spectrum. Time increments from a few quadrillionths of a second (femtoseconds) up to the second range can be selected for individual images.

"This makes our nanoscope suitable for viewing ultra-fast physical processes as well as for biological process, which are often very slow," says the HZDR's Dr. Michael Gensch.

Combining two methods guarantees high spatial and temporal Resolution
The nanoscope is based on the further development of near-field microscopy, in which laser light is irradiated on a ultra-thin metal point. This creates highly bundled light - a hundred times smaller than the wavelength of light, which otherwise represents the limit of "normal" optics with lenses and mirrors. "In principle, we can use the entire wavelength spectrum of near-field microscopy, from ultraviolet to the terahertz range," says Dr. Susanne Kehr from the TU Dresden.

"The focused light delivers energy to the sample, creating a special interaction between the point and the sample in what is known as the near-field. By observing the back-scattered portion of the laser light, one can achieve a spatial resolution in the order of the near-field magnitude, that is, in the nanometer range." This technology, known as SNOM (Scanning Near-Field Optical Microscopy), is typically only utilized for imaging static conditions.

Using ultra-fast spectroscopy is the crucial tool, on the other hand, enabling scientists to study dynamic processes on short timescales and with extreme sensitivity. The spatial resolution has, until now, been limited to the micrometer range however. The principle in such pump-probe experiments that function, for example, with light, pressure or electric field pulses is as follows: while a first pulse excites the sample under study, a second pulse monitors the change in the sample. If the time between them is varied, snapshots can be taken at different times, and a movie can be assembled.

A clever correction of the measurement errors leads to the high sensitivity of the spectroscopic procedure. Activation by an excitation pulse means a type of disturbance for the entire sample system, which needs to be filtered out so that noise or the "background" is eliminated. This is achieved by probing the unperturbed sample with a second reference pulse directly before the excitation.

This particular technology could not be combined with near-field optical microscopy until now. For the first time, the teams led by the two Dresden physicists have managed to combine all the advantages of both methods in their nanoscope.

"We have developed software with a special demodulation technology with which--in addition to the outstanding resolution of near-field optical microscopy that is at least three orders of magnitude better than the resolution of common ultra-fast spectroscopy--we can now also measure dynamic changes in the sample with high sensitivity," explains Kehr.

The clever electronic method enables the nanoscope to exclusively record only the changes actually occurring in the sample's properties due to the excitation. Although other research groups have only recently reported good temporal resolution with their nanoscopes, they could not, however, obtain this important correction mode. An additional advantage to the Dresden solution is that it can easily be integrated into existing near-field microscopes.

Universal in every respect
"With our nanoscope's considerable wavelength coverage, dynamic processes can be studied with the best suited wavelengths for the specific process under study. This is an important step in understanding these processes. Our colleagues at the Freie Universitat Berlin have, for example, the ambitious dream of tracking structural changes during the photocycle of an individual membrane protein at specific wavelengthes in the infrared spectrum," Gensch says.

Together with his TU colleague, Susanne Kehr, he demonstrated the new method on a known sample system, a semi-conducting layer made of silicon and germanium. "Had we used an unknown sample for the demonstration, we would not have been in the position to correctly interpret the functionality of our approach," Kehr stresses.

The Dresden nanoscope is universally adaptable to respective scientific questions. The probe pulse wavelengths can, in principle, reach from the low terahertz range to the ultraviolet range. The sample can be stimulated with laser, pressure, electric field or magnetic field pulses. The principle was tested at the HZDR on a typical laboratory laser as well as on the free-electron laser FELBE. First tests on the new terahertz source TELBE, which provides extremely short electric and magnetic field pulses for excitation, are in preparation.

"In the future, we will not only see how quickly a process occurs, but we can also better localize where exactly it takes place in the sample. This is especially important for our TELBE facility, which will be in operation next year," explains Michael Gensch, head of the TELBE project at the HZDR.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Nanoscale switches promise faster, more versatile chip-scale devices
Washington DC (SPX) Aug 10, 2015
By combining complementary mindsets on the leading edges of electronic and radiofrequency device engineering, a pair of researchers in DARPA's Young Faculty Award program has devised ultratiny, electronic switches with reprogrammable features resembling those at play in inter-neuron communication. These highly adaptable nanoscale switches can toggle on and off so fast, and with such low lo ... read more


NANO TECH
Malaysia will send team to inspect Maldives debris for MH370 link

Heathrow trials steeper approaches as runway decision looms

Lockheed Martin integrating targeting pod on Japan's F-2s

BAE Systems to provide flight-line maintenance services for trainer aircraft

NANO TECH
China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

NANO TECH
Hackers turn Square readers into crime tools

New hacks strike at heart of mobile innovations

Smart gadgets from guns to cars ripe for hacking

US bill requiring carriers to report 'terror' criticized

NANO TECH
Researchers Developing System to Lower Community Energy Usage

New Zealand puts bets on diverse energy mix

Germany's RWE changing the way it does business

Qualified praise for Obama's clean power plan

NANO TECH
'Yolks' and 'shells' improve rechargeable batteries

Better together: Graphene-nanotube hybrid switches

New Zealand marks end to coal power

A zero-emission route to clean middle-distillate fuels from coal

NANO TECH
Meggitt to upgrade British military training systems

Harris to support Navy efforts for counter-mine measures

Orbital ATK producing ammunition for U.S., allies

Saudi Arabia seeks ammunition for its land forces

NANO TECH
Sandcastles inspire new nanoparticle binding technique

Growing graphene nanoribbons could enable fast efficient electronics

Transparent, conductive network of encapsulated silver nanowires

Nanoscale switches promise faster, more versatile chip-scale devices

NANO TECH
IBM acquires medical imaging firm to help Watson 'see'

Giving robots a more nimble grasp

Object recognition for robots

Brain-controlled prosthesis nearly as good as one-finger typing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.