Building better fighter planes and space ships by Staff Writers Binghamton NY (SPX) Jan 05, 2016
Thousands bound together are still thinner than a single strand of human hair, but with research from Binghamton University, boron nitride nanotubes may help build better fighter planes and space shuttles. A team of scientists led by Changhong Ke, associate professor of mechanical engineering at Binghamton University's Thomas J. Watson School of Engineering and Applied Science, and researcher Xiaoming Chen were the first to determine the interface strength between boron nitride nanotubes (BNNTs) and epoxy and other polymers. "We think that this could be the first step in a process that changes the way we design and make materials that affect the future of travel on this planet and exploration of other worlds beyond our own," said Ke. "Those materials may be way off still, but someone needed to take the first step, and we have." Ke's group found that BNNTs in polymethyl metacrylate (PMMA) form much stronger interfaces than comparable carbon tubes with the same polymer. Furthermore, BNNT-epoxy interfaces are even stronger. A stronger interface means that a larger load can be transferred from the polymer to nanotubes, a critical characteristic for superior mechanical performance of composite materials. Future airplane wings and spacecraft hulls built of those BNNT composite materials could be lighter and more fuel efficient, while maintaining the strength needed to withstand the rigors of flight. Since nanotube wall thickness and diameters are measured in billionths of a meter, Ke and Chen extracted single BNNTs from a piece of epoxy and then repeated the process with PMMA inside an electron microscope. Their conclusions were based on the amount of force needed to do the extractions. This was the first time that BNNTs - more chemically and thermally stable than the more common carbon nanotubes (CNTs) - were in this kind of experiment. BNNTs can shield space radiation better than CNTs, which would make them an ideal building material for spacecraft. "They are both light and strong," Ke said of the two kinds of tubes. "They have similar mechanical properties, but different electrical properties. Those differences help to add strength to the BNNT interfaces with the polymers." Metaphorically, think of the epoxy or other polymer materials with the BNNT nanotubes inside like a piece of reinforced concrete. That concrete gets much of its strength from the makeup of the steel rebar and cement; the dispersion of rebar within the cement; the alignment of rebar within the cement; and "stickiness" of the connection between the rebar and the surrounding cement. The scientists essentially measured the "stickiness" of a single nanotube 'rebar' - helped by molecular and electrostatic interactions - by removing it from polymer "cement." The work was funded by the US Air Force Office of Scientific Research - Low Density Materials program, with materials provided by NASA. Co-authors Xianqiao Wang and graduate student Liuyang Zhang from the University of Georgia provided verification and explanation data through computational simulations after the experiments were conducted in Binghamton. Catharine Fay from the NASA Langley Research Center and Cheol Park of the Center and the University of Virginia are co-authors on the paper. In September, Ke and his collaborators received three years of additional funding totaling $815,000 from the Air Force to continue research. The paper, "Mechanical Strength of Boron Nitride Nanotube-Polymer Interfaces," was published in the latest issue of Applied Physics Letters.
Related Links Binghamton University Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |